K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
12 tháng 5 2018

Lời giải :

Ta thấy:

\(\left\{\begin{matrix} m^2+2\vdots n\\ n^2+2\vdots m\end{matrix}\right.\) \(\Rightarrow (m^2+2)(n^2+2)\vdots mn\)

\(\Leftrightarrow m^2n^2+2m^2+2n^2+4\vdots mn\)

\(\Rightarrow 2m^2+2n^2+4\vdots mn\)

\(\Leftrightarrow 2(m^2+n^2+2)\vdots mn\)

Vì $m,n$ đều lẻ nên \((2,mn)=1\Rightarrow m^2+n^2+2\vdots mn(*)\)

Mặt khác:

Một số chính phương thì chia $4$ dư $0,1$. Vì $m,n$ lẻ nên \(m^2\equiv n^2\equiv 1\pmod 4\)

\(\Rightarrow m^2+n^2+2\equiv 4\equiv 0\pmod 4\) hay \(m^2+n^2+2\vdots 4(**)\)

Từ \((*);(**)\)\((4,mn)=1\) nên \(m^2+n^2+2\vdots 4mn\)

Ta có đpcm.

15 tháng 5 2018

Ta thấy:

⎧⎩⎨m2+2⋮nn2+2⋮m{m2+2⋮nn2+2⋮m ⇒(m2+2)(n2+2)⋮mn⇒(m2+2)(n2+2)⋮mn

⇔m2n2+2m2+2n2+4⋮mn⇔m2n2+2m2+2n2+4⋮mn

⇒2m2+2n2+4⋮mn⇒2m2+2n2+4⋮mn

⇔2(m2+n2+2)⋮mn⇔2(m2+n2+2)⋮mn

m,nm,n đều lẻ nên (2,mn)=1⇒m2+n2+2⋮mn(∗)(2,mn)=1⇒m2+n2+2⋮mn(∗)

Mặt khác:

Một số chính phương thì chia 440,10,1. Vì m,nm,n lẻ nên m2≡n2≡1(mod4)m2≡n2≡1(mod4)

⇒m2+n2+2≡4≡0(mod4)⇒m2+n2+2≡4≡0(mod4) hay m2+n2+2⋮4(∗∗)m2+n2+2⋮4(∗∗)

Từ (∗);(∗∗)(∗);(∗∗)(4,mn)=1(4,mn)=1 nên m2+n2+2⋮4mnm2+n2+2⋮4mn

đúng thì tick nhé

30 tháng 5 2018

Ta có : \(m;n\)là hai số nguyên tố cùng nhau.

\(\RightarrowƯCLN(m;n)=1\)

Mà \(m^2⋮n\)

      \(n^2⋮m\)

Và có : \(m;n\)là hai số lẻ nguyên dương

\(\Rightarrow m=m=1\)

\(\Rightarrow m^2+n^2+2=4\)

\(\Rightarrow4m.n=4\)

\(\Rightarrow m^2+n^2+2⋮4mn\left(đpcm\right)\)

30 tháng 5 2018

Ta có:

\(\hept{\begin{cases}m^2+2⋮n\\n^2+2⋮m\end{cases}}\)

\(\Rightarrow\left(m^2+2\right)\left(n^2+2\right)⋮mn\)

\(\Rightarrow m^2n^2+2m^2+2n^2+4⋮mn\)

\(\Rightarrow2m^2+2n^2+4⋮mn\)

\(\Rightarrow m^2+n^2+2⋮mn\left(1\right)\)

Vì m, n lẻ 

\(\Rightarrow\hept{\begin{cases}m^2\equiv1\left(mod4\right)\\n^2\equiv1\left(mod4\right)\end{cases}}\)

\(\Rightarrow m^2+n^2+2⋮4\left(2\right)\)

Từ (1) và (2) \(\Rightarrow m^2+n^2+2⋮4mn\)

3 tháng 1 2018

mọi người ơi giúp mình vs mai ktra r

7 tháng 5 2018

1)

2x + 3y = 300

Ta thấy 3y \(⋮\) 3 ; 300 \(⋮\) 3

=> 2x \(⋮\) 3

=> x \(⋮\) 3

đặt x = 3n ( n >0)

=> 2x + 3y = 300

=> 6n + 3y = 300

=> y = \(\dfrac{\left(300-6n\right)}{3}=\left(100-2n\right)\)

Vì y là số nguyên dương => y > 0

=> 100 - 2n > 0

=> 50 > n

=> 0<n<50

=> số nghiệm nguyên dương thoả mãn phương trình là :

(49-1):1+1 = 49 (nghiệm).

30 tháng 3 2018

Sửa đề : Tìm nghiệm nguyên thỏa mãn bạn nhé.

Vì nếu tìm nghiệm nguyên dương thì từ đầu ta suy ra ngay PT vô nghiệm

Lời giải: Cho x,y và z thuộc Z

\(\Leftrightarrow\left\{{}\begin{matrix}x+y-2=z\left(1\right)\\3x^2+2y^2=z^2+13\left(2\right)\end{matrix}\right.\)

Lấy (2) trừ (1) bình phương ta

\(\Leftrightarrow2x^2+y^2-2xy-4x+4y+4=13\)

\(\Leftrightarrow\left(x-y-2\right)^2+\left(x+4\right)^2=37\)

Tổng hai số chính phương bằng 37 có một cặp duy nhất: (36,1)

\(\left[{}\begin{matrix}\left\{{}\begin{matrix}\left|x-y-2\right|=1\\\left|x+4\right|=36\end{matrix}\right.\left(\circledast\right)\\\left\{{}\begin{matrix}\left|x-y-2\right|=6\\\left|x+4\right|=1\end{matrix}\right.\left(\circledast\circledast\right)\end{matrix}\right.\)

\(\Rightarrow z=2-\left(x+y\right)\)

Đến đây lập bảng 13 nghiệm là ra, kết quả giống như Akai Haruma

AH
Akai Haruma
Giáo viên
29 tháng 3 2018

Lời giải:

Sửa lại đề là tìm nghiệm nguyên thôi bạn nhé. Nếu tìm nghiệm nguyên dương thì hiển nhiên từ pt đầu tiên ta suy ra ngay hệ vô nghiệm.

Ta có:

\(\left\{\begin{matrix} x+y+z=2\\ 3x^2+2y^2-z^2=13\end{matrix}\right.\) \(\Leftrightarrow \left\{\begin{matrix} z=2-x-y\\ 3x^2+2y^2=13+z^2\end{matrix}\right.\)

\(\Rightarrow 3x^2+2y^2=13+(2-x-y)^2\)

\(\Leftrightarrow 3x^2+2y^2=13+4+x^2+y^2+2xy-4x-4y\)

\(\Leftrightarrow 2x^2+y^2-2xy+4x+4y-17=0\)

\(\Leftrightarrow (x-y-2)^2+(x+4)^2=37\)

\(\Rightarrow (x+4)^2=37-(x-y-2)^2\leq 37\)

\(\Rightarrow -\sqrt{37}\leq x+4\leq \sqrt{37}\)

Suy ra \(-10\leq x\leq 2\)

Ta có:

Violympic toán 9

Từ đây suy ra \(x\in \left\{-10; -5; -3; 2\right\}\)

Với \(x=-10; (x-y-2)^2=1\Rightarrow (-12-y)^2=1\)

\(\Rightarrow \left[\begin{matrix} y=-13\\ y=-11\end{matrix}\right.\Rightarrow\left[\begin{matrix} z=25\\ z=23\end{matrix}\right.\)

Với \(x=-5; (x-y-2)^2=36\Rightarrow (-7-y)^2=36\)

\(\Rightarrow \left[\begin{matrix} y=-1\rightarrow z=8\\ y=-13\rightarrow z=20\end{matrix}\right.\)

Với \(x=-3; (x-y-2)^2=36\Rightarrow (-5-y)^2=36\)

\(\Rightarrow \left[\begin{matrix} y=1\rightarrow z=4\\ y=-11\rightarrow z=16\end{matrix}\right.\)

Với \(x=2, (x-y-2)^2=1\Rightarrow y^2=1\)

\(\Rightarrow \left[\begin{matrix} y=1\rightarrow z=-1\\ y=-1\rightarrow z=1\end{matrix}\right.\)

Vậy.....

23 tháng 2 2021

1. \(\left\{{}\begin{matrix}3x^2+y^2+4xy=8\left(1\right)\\\left(x+y\right)\left(x^2+xy+2\right)=8\end{matrix}\right.\)

=> \(3x^2+3xy+xy+y^2=\left(x+y\right)\left(x^2+xy+2\right)\)

<=> \(\left(x+y\right)\left(3x+y\right)=\left(x+y\right)\left(x^2+xy+2\right)=0\)

<=> \(\left(x+y\right)\left(x^2+xy+2-3x-y\right)=0\)

<=> \(\left[{}\begin{matrix}x=-y\\x^2+xy+2-3x-y=0\end{matrix}\right.\)

TH1: x = -y thay vào pt (1), ta được:

3y2 + y2 - 4y2 = 8

<=> 0y = 8 (vô lí)

TH2: \(x^2+xy+2-3x-y=0\)

<=> x (x + y) - (x + y) - 2(x - 1) = 0

<=> (x - 1)(x + y) - 2(X - 1) = 0

<=> (x - 1)(x + y - 2) = 0

<=> \(\left[{}\begin{matrix}x=1\\x+y-2=0\end{matrix}\right.\)

Với x =  1 thay vào pt (1) -> 3 + y2 + 4y = 8

<=> y2 + 4y - 5 = 0 <=> (y + 5)(y - 1) = 0

<=> \(\left[{}\begin{matrix}y=-5\\y=1\end{matrix}\right.\)

Với x + y - 2 = 0 => x = 2 - y thay vào pt (1)

=> 3(2 - y)2 + y2 + 4(2 - y)y = 8

<=> 3y2 - 12y + 12 + y2 + 8 - 4y2 = 8

<=> 12 = 12y <=> y= 1 => x = 2 - 1 = 1

Vậy ....

26 tháng 5 2023

Với mọi �,�∈�+ ta có: (�+�)2≤2(�2+�2) ⇔�4≤2(�3+2)

 ⇔�4−2�3−4≤0⇔�3(�−2)−4≤0(∗)

+) Nếu �≥3 thì �3(�−2)−4≥�3−4>0 (mâu thuẫn với (*))

⇒�∈{0;1;2}

+) Với �=0⇒{�+�=0�2+�2=2⇒ không tồn tại �,�∈�+ thỏa mãn hệ phương trình.

+) Với �=1⇒{�+�=1�2+�2=3⇒ không tồn tại �,�∈�+ thỏa mãn hệ phương trình.

+) Với �=2⇒{�+�=4�2+�2=10⇔{�+�=4(�+�)2−2��=10⇔{�+�=4��=3

Khi đó ta có hai số �,� là nghiệm của phương trình: �2−4�+3=0⇔[�=1�=3

⇒(�;�)∈{(1;3);(3;1)}.

Vậy nghiệm của hệ phương trình đã cho là: (�;�;�)∈{(2;1;3);(2;3;1)}

nếu đúng cho mình xin 1 tick nhé!!!!