Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{ab}+\sqrt{4b.c}+2\left(a+c\right)\le\dfrac{1}{2}\left(a+b\right)+\dfrac{1}{2}\left(4b+c\right)+2\left(a+c\right)=\dfrac{5}{2}\left(a+b+c\right)\)
\(\Rightarrow P\ge\dfrac{2}{5}\left(\dfrac{1}{a+b+c}-\dfrac{1}{\sqrt{a+b+c}}\right)=\dfrac{2}{5}\left(\dfrac{1}{\sqrt{a+b+c}}-\dfrac{1}{2}\right)^2-\dfrac{1}{10}\ge-\dfrac{1}{10}\)
Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}a+b+c=4\\a=b=\dfrac{c}{4}\end{matrix}\right.\) em tự giải ra a;b;c
\(P=2\Sigma a+\Sigma\dfrac{1}{a}=\Sigma a+\Sigma a+\Sigma\dfrac{1}{a}\ge3.\sqrt[3]{\left(\Sigma a\right)^2.\Sigma\dfrac{1}{a}}\)
\(Q=\left(\Sigma a\right)^2.\Sigma\dfrac{1}{a}=\left(3+2\Sigma ab\right).\Sigma\dfrac{1}{a}=3\Sigma\dfrac{1}{a}+4\Sigma a+2\Sigma\dfrac{ab}{c}\ge3\Sigma\dfrac{1}{a}+6\Sigma a=3\left(\Sigma\dfrac{1}{a}+2\Sigma a\right)=3P\)\(\Rightarrow\)\(P\ge3\sqrt[3]{3P}\) \(\Leftrightarrow P^3\ge81P\Leftrightarrow P^2\ge81\left(P>0\right)\Leftrightarrow P\ge9\)
" = " \(\Leftrightarrow a=b=c=1\)
Vì $\large a,b,c \in\mathbb{N^*}$ và $\large a^2+b^2+c^2=3\Rightarrow \left\{\begin{matrix} a<\sqrt{3} & \\ b<\sqrt{3} & \\ c<\sqrt{3} & \end{matrix}\right.$
Ta chứng minh bất đẳng thức phụ sau:
Với $0 <x<\sqrt{3}$ thì $2x+\frac{1}{x} \ge x^2.\frac{1}{2}+\frac{5}{2}(*)$
Thật vậy $(*)$ $\large \Leftrightarrow (x-2)(x-1)^2 \le0$
Do $\large x<\sqrt{3}\Leftrightarrow x<2\Leftrightarrow (x-2)(x-1)^2<0$ (Luôn đúng)
Do đó bất đẳng thức được chứng minh
Dấu $"="$ xảy ra khi $x=1$
Trở lại bài toán:
Áp dụng BĐT $(*)$ ta được:
$\large 2a+\frac{1}{a}+2b+\frac{1}{b}+2c+\frac{1}{c}\ge\frac{1}{2}(a^2+b^2+c^2)+\frac{15}{2}=9$
Do $a^2+b^2+c^2=3$
Vậy $GTNN=9$
Dấu $"="$ xảy ra khi: $a=b=c=1$
Ta thấy \(ab\le\dfrac{a^2+b^2}{2}=1\) và \(a+b\le\sqrt{2\left(a^2+b^2\right)}=2\). Áp dụng BĐT B.C.S, ta được \(P=\dfrac{a^4}{ba^2+a^2}+\dfrac{b^4}{ab^2+b^2}\) \(\ge\dfrac{\left(a^2+b^2\right)^2}{ba^2+ab^2+a^2+b^2}=\dfrac{2^2}{ab\left(a+b\right)+2}\ge\dfrac{4}{1.2+2}=1\)
ĐTXR \(\Leftrightarrow a=b=1\)
Vậy GTNN của P là 1 khi \(a=b=1\)
Ta có:
\(P=\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\left(a+b+c+36abc\right)\)
\(P=\dfrac{a}{b}+\dfrac{b}{a}+\dfrac{b}{c}+\dfrac{c}{b}+\dfrac{a}{c}+\dfrac{c}{a}+3+36\left(ab+bc+ca\right)\)
\(P=\dfrac{a^2+b^2}{ab}+\dfrac{b^2+c^2}{bc}+\dfrac{c^2+a^2}{ca}+3+36\left(ab+bc+ca\right)\)
\(P=\dfrac{\left(a+b\right)^2}{ab}+\dfrac{\left(b+c\right)^2}{bc}+\dfrac{\left(c+a\right)^2}{ca}-3+36\left(ab+bc+ca\right)\)
\(P\ge\dfrac{4\left(a+b+c\right)^2}{ab+bc+ca}-3+36\left(ab+bc+ca\right)\)
\(P\ge\dfrac{4}{ab+bc+ca}+36\left(ab+bc+ca\right)-3\ge2\sqrt{\dfrac{4.36\left(ab+bc+ca\right)}{ab+bc+ca}}-3=21\)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\)
Lời giải:
Nếu bạn học dồn biến- thừa trừ rồi thì có thể làm như sau:
$P=\frac{ab+bc+ac}{abc}(1+36abc)=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+36(ab+bc+ac)=f(a,b,c)$
Giả sử $c=\max(a,b,c)$. Ta sẽ chứng minh $f(a,b,c)\geq f(\frac{a+b}{2}, \frac{a+b}{2}, c)$
Thật vậy:
\(f(a,b,c)- f(\frac{a+b}{2}, \frac{a+b}{2}, c)=\frac{(a+b)^2-4ab}{ab(a+b)}+36.\frac{4ab-(a+b)^2}{4}\)
\(=\frac{(a-b)^2}{ab(a+b)}-9(a-b)^2=(a-b)^2(\frac{1}{ab(a+b)}-9)\)
Vì $c=\max (a,b,c)$ mà $a+b+c=1\Rightarrow a+b\leq \frac{2}{3}$
$\Rightarrow ab\leq \frac{1}{4}(a+b)^2\leq \frac{1}{9}$
$\Rightarrow \frac{1}{ab(a+b)}\geq \frac{27}{2}$
$\Rightarrow \frac{1}{ab(a+b)}-9>0$
Do đó: $f(a,b,c)\geq f(\frac{a+b}{2}, \frac{a+b}{2}, c)$
Mà:
$f(\frac{a+b}{2}, \frac{a+b}{2}, c)-21=\frac{4}{a+b}+\frac{1}{c}+36[\frac{(a+b)^2}{4}+c(a+b)]-21$
$=\frac{4}{1-c}+\frac{1}{c}+9(1-c)^2+36c(1-c)-21$
$=\frac{3c+1}{c(1-c)}+9(1-c)^2+36c(1-c)-21$
$=(3c-1)^2.\frac{3c^2-3c+1}{c(1-c)}\geq 0$ với mọi $1>c\geq \frac{1}{3}$
Do đó $f(\frac{a+b}{2}, \frac{a+b}{2}, c)\geq 21$
$\Rightarrow f(a,b,c)\geq 21$
Hay $P_{\min}=21$
\(GT\Rightarrow a+b=5\)
\(P=\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}=\dfrac{4}{5}\)
Dấu "=" xảy ra khi \(a=b=\dfrac{5}{2}\)