K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2017

cảm ơn

23 tháng 12 2017

Áp dụng bđt \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) ta có :

\(A=\frac{1}{1+3ab+a^2}+\frac{1}{1+3ab+b^2}\ge\frac{4}{a^2+b^2+6ab+2}\)

Ta có : \(a^2+b^2+6ab+2=\left(a^2+2ab+b^2\right)+4ab+2=\left(a+b\right)^2+4ab+2=4ab+3\)

Áp dụng bđt \(xy\le\frac{\left(x+y\right)^2}{4}\) ta có : \(4ab+3\le4.\frac{\left(a+b\right)^2}{4}+3=\left(a+b\right)^2+3=1+3=4\)

\(\Rightarrow A\ge\frac{4}{a^2+b^2+6ab+2}\ge\frac{4}{4}=1\) có GTNN là 1

Dấu "=" xảy ra \(\Leftrightarrow a=b=\frac{1}{2}\)

8 tháng 6 2021

Ta có: \(\left(a-b\right)^2\ge0\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow a^2+b^2\ge2ab\)

\(\Rightarrow\orbr{\begin{cases}a^2+2ab+b^2\ge4ab\\2\left(a^2+b^2\right)\ge a^2+2ab+b^2\end{cases}\Leftrightarrow\orbr{\begin{cases}a^2+2ab+b^2\ge4ab\\2\left(a^2+b^2\right)\ge a^2+2ab+b^2\end{cases}}}\)

\(\Leftrightarrow\orbr{\begin{cases}\left(a+b\right)^2\ge4ab\left(1\right)\\\left(a+b\right)^2\le2\left(a^2+b^2\right)\left(2\right)\end{cases}}\)

Theo đề bài:

\(a+b+3ab=1\)

\(\Leftrightarrow4\left(a+b\right)+12ab=4\)

\(\Leftrightarrow4\left(a+b\right)+3\left(a+b\right)^2\ge4\left(theo\left(1\right)\right)\)

\(\Leftrightarrow3\left(a+b\right)^2+4\left(a+b\right)-4\ge0\)

\(\Leftrightarrow\left(a+b+2\right)\left[3\left(a+b\right)-2\right]\ge0\)

\(\Leftrightarrow3\left(a+b\right)-2\ge0\left(a,b>0\Rightarrow a+b+2>0\right)\)

\(\Leftrightarrow a+b\ge\frac{2}{3}\)

`\(\Rightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\ge\frac{4}{9}\left(theo\left(2\right)\right)\)

Áp dụng các kết quả trên, ta có:

\(\left(\sqrt{1-a^2}+\sqrt{1-b^2}\right)^2\le2\left(1-a^2+1-b^2\right)\)\(=4-2\left(a^2+b^2\right)\le4-\frac{4}{9}=\frac{32}{9}\)

\(\Rightarrow\sqrt{1-a^2}+\sqrt{1-b^2}\le\frac{4\sqrt{2}}{3}\)

Ta có: \(\frac{3ab}{a+b}=\frac{1-\left(a+b\right)}{a+b}=\frac{1}{a+b}-1\le\frac{1}{\frac{2}{3}}-1=\frac{1}{2}\)

\(\Rightarrow A\le\frac{4\sqrt{2}}{3}+\frac{1}{2}\)

Dấu '=' xảy ra <=> \(\hept{\begin{cases}a=b\\a+b+3ab=1\end{cases}\Leftrightarrow\hept{\begin{cases}a=b\\3a^2+2a-1=0\end{cases}\Leftrightarrow}a=b=\frac{1}{3}\left(a,b>0\right)}\)

Vậy max A là \(\frac{4\sqrt{2}}{3}+\frac{1}{2}\Leftrightarrow a=b=\frac{1}{3}\)

9 tháng 3 2020

Nguyễn Việt Lâm

9 tháng 3 2020

Phạm Thị Diệu Huyền

Nguyễn Chí Thành

Nguyễn Thị Vân

27 tháng 11 2019

Ta có: \(P=\frac{a^2+3ab+b^2}{\sqrt{ab}\left(a+b\right)}=\frac{\left(a+b\right)^2+ab}{\sqrt{ab}\left(a+b\right)}=\frac{a+b}{\sqrt{ab}}+\frac{\sqrt{ab}}{a+b}\)

\(=\frac{3\left(a+b\right)}{4\sqrt{ab}}+\left(\frac{a+b}{4\sqrt{ab}}+\frac{\sqrt{ab}}{a+b}\right)\ge\frac{3.2\sqrt{ab}}{4\sqrt{ab}}+2=\frac{6}{4}+2=2,5\)Vậy Min P = 2,5 đạt được khi a = b

28 tháng 11 2019

Tại sao \(\frac{3\left(a+b\right)}{4\sqrt{ab}}+\frac{a+b}{4\sqrt{ab}}+\frac{\sqrt{ab}}{a+b}\)\(\frac{3.2\sqrt{ab}}{4\sqrt{ab}}\) + 2 vậy ???

Áp dụng bđt AM-GM ta có

\(P\ge\frac{4}{2+a^2+b^2+6ab}=\frac{4}{\left(a+b\right)^2+4ab+1}=\frac{2}{1+2ab}\)

Lại có \(ab\le\frac{\left(a+b\right)^2}{4}=\frac{1}{4}\)

\(\Rightarrow P\ge\frac{2}{1+\frac{1}{2}}=\frac{4}{3}\)

Dấu "=" xảy ra khi \(a=b=\frac{1}{2}\)

3 tháng 3 2021

Cho các số nguyên dương a,b thỏa mãn  a.b=2.(a-b). Tìm các số a,b thỏa mãn đẳng thức trên.