K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
28 tháng 9 2019

\(\overrightarrow{CC'}=\overrightarrow{CB}+\overrightarrow{BB'}+\overrightarrow{B'C'}=\overrightarrow{BB'}+\overrightarrow{DA}+\overrightarrow{AD'}=\overrightarrow{BB'}+\overrightarrow{DD'}\)

\(\Rightarrow\overrightarrow{CC}'=-\overrightarrow{B'B}-\overrightarrow{D'D}\)

\(\Rightarrow\overrightarrow{B'B}+\overrightarrow{CC'}+\overrightarrow{D'D}=\overrightarrow{B'B}-\overrightarrow{B'B}-\overrightarrow{D'D}+\overrightarrow{D'D}=\overrightarrow{0}\)

15 tháng 8 2018

1) đây nha : https://hoc24.vn/hoi-dap/question/637285.html

câu 2 cũng chả khác gì cả

NV
13 tháng 11 2019

\(\overrightarrow{AA'}=\overrightarrow{AO}+\overrightarrow{OO'}+\overrightarrow{O'A'}\)

Tách tương tự với 3 số hạng còn lại sau đó cộng vế với vế và chú ý rằng: \(\overrightarrow{AO}+\overrightarrow{CO}=\overrightarrow{0};\) \(\overrightarrow{BO}+\overrightarrow{DO}=\overrightarrow{0}\); \(\overrightarrow{O'A'}+\overrightarrow{O'C'}=\overrightarrow{0}\) ; \(\overrightarrow{O'B'}+\overrightarrow{O'D'}=\overrightarrow{0}\) theo tính chất hình bình hành ta sẽ có đpcm

Bài 2:

a: \(\overrightarrow{AC}-\overrightarrow{BC}=\overrightarrow{DC}\)

\(\Leftrightarrow\overrightarrow{CB}+\overrightarrow{AC}=\overrightarrow{DC}\)

=>vecto AB=vecto DC

=>ABCD là hình bình hành

b: \(\Leftrightarrow\overrightarrow{DB}-\overrightarrow{DA}=2\cdot\overrightarrow{DC}\)

\(\Leftrightarrow\overrightarrow{AD}+\overrightarrow{DB}=2\cdot\overrightarrow{DC}\)

=>vecto AB=2 vecto DC

=>ABCD là hình thang

24 tháng 7 2019

Câu a đề là 4 vecto cộng lại bằng vecto 0 với \(O = AC\cap BD\)nha

AH
Akai Haruma
Giáo viên
8 tháng 9 2017

Lời giải:

Ta chứng minh bổ đề sau:

Với tam giác $ABC$ và $G$ là trọng tâm tam giác thì :

\(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\)

Thật vậy. Gọi giao điểm \(AG\cap BC=T\Rightarrow T\) là trung điểm của tam giác. \(\Rightarrow \overrightarrow{BT}+\overrightarrow{CT}=0\)

Theo tính chất đường trung tuyến:

\(\overrightarrow{GA}=2\overrightarrow{TG}\Leftrightarrow \overrightarrow{GA}+2\overrightarrow{GT}=0\) \((1)\)

\(\left\{\begin{matrix} \overrightarrow{GT}=\overrightarrow{GB}+\overrightarrow{BT}\\ \overrightarrow{GT}=\overrightarrow{GC}+\overrightarrow{CT}\end{matrix}\right.\Rightarrow 2\overrightarrow{GT}=\overrightarrow{GB}+\overrightarrow{GC}\) \((2)\)

Từ \((1),(2)\Rightarrow \overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=0\)

Áp dụng CT trên vào bài toán thì: \(\left\{\begin{matrix} \overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=0\\ \overrightarrow{G'A'}+\overrightarrow{G'B'}+\overrightarrow{G'C'}=0\end{matrix}\right.\)

Khi đó, từ \(\left\{\begin{matrix} \overrightarrow{GG'}=\overrightarrow{GA}+\overrightarrow{AA'}+\overrightarrow{A'G'}\\ \overrightarrow{GG'}=\overrightarrow{GB}+\overrightarrow{BB'}+\overrightarrow{B'G'}\\ \overrightarrow{GG'}=\overrightarrow{GC}+\overrightarrow{CC'}+\overrightarrow{C'G'}\end{matrix}\right.\)

\(\Rightarrow 3\overrightarrow{GG'}=\overrightarrow{AA'}+\overrightarrow{BB'}+\overrightarrow{CC'}\)

Ta có đpcm.

NV
11 tháng 10 2020

\(\overrightarrow{AA'}+\overrightarrow{BB'}+\overrightarrow{CC'}=\frac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)+\frac{1}{2}\left(\overrightarrow{BA}+\overrightarrow{BC}\right)+\frac{1}{2}\left(\overrightarrow{CA}+\overrightarrow{CB}\right)\)

\(=\frac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{BA}\right)+\frac{1}{2}\left(\overrightarrow{BC}+\overrightarrow{CB}\right)+\frac{1}{2}\left(\overrightarrow{AC}+\overrightarrow{CA}\right)=\overrightarrow{0}\)

NV
18 tháng 8 2021

A sai

\(\overrightarrow{AB}-\overrightarrow{AD}=\overrightarrow{AB}+\overrightarrow{DA}=\overrightarrow{DA}+\overrightarrow{AB}=\overrightarrow{DB}=-\overrightarrow{BD}\) mới đúng