K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
5 tháng 10 2021
a: Để (d1)//(d2) thì \(\left\{{}\begin{matrix}k-2=1\\k+2\ne-1\end{matrix}\right.\Leftrightarrow k=3\)
AH
Akai Haruma
Giáo viên
10 tháng 5 2021
Lời giải:
Giao điểm của 2 đường thẳng thuộc trục hoành nên có dạng $(a,0)$. Vì điểm này thuộc $(d_1):x+y=-1$ nên $a+0=-1\Rightarrow a=-1$
Vậy giao điểm của 2 ĐT trên là $(-1,0)$
Giao điểm này $\in (d_2)$ khi mà $m.(-1)+0=1$
$\Leftrightarrow m=-1$
Làm
Để (d1) và (d2)
a, (d1) và (d2) cắt nhau thì a\(\ne a'\) \(\Leftrightarrow3\ne m-1\Leftrightarrow m\ne4\)
Giả sử A là điểm mà (d1) và (d2) cắt nhau trên Ox thì A(x';0)
\(\Rightarrow\) 0= 3x' -1 \(\Leftrightarrow x'=\frac{1}{3}\)
Thay x' = \(\frac{1}{3}\) và y' =0 vào (d2) ta có:
0=(m-1)\(\frac{1}{3}+2\)
\(\Leftrightarrow m=-5\left(tm\right)\)
Kl:...
b, Giả sử (d1) và (d2) cắt nhau tại B thuộc góc phần tư thứ 1 thì B(x';y') với x',y'>0
\(\Rightarrow y'=3x'-1=\left(m-1\right)x'+2\)
\(\Leftrightarrow x'\left(4-m\right)=3\Leftrightarrow x'=\frac{3}{4-m}\left(v\text{ì}m\ne4\right)\)
\(\Rightarrow y'=\frac{m+5}{4-m}\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{3}{4-m}>0\\\frac{m+5}{4-m}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4-m>0\\m+5>0\end{matrix}\right.\Leftrightarrow-5< m< 4\left(tm\right)\)
Kl:.....