Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/
OA=OB (gt); OC=OD (gt) => ACBD là hbh (Tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường là hbh)
b/
AD=CB (trong hình bình hành các cặp cạnh đối bằng nhau từng đôi 1)
c/
AB//BC (trong hbh các cặp cạnh đối // với nhau từng đôi 1)
=> AM//BN (1)
Ta có
AD=CB(cmt); MA=MD (gt); NB=NC (gt) => AM=BN (2)
Từ (1) và (2) => AMBN là hbh (tứ giác có cặp cạnh đối // và bằng nhau là hbh)
Nối M với N giả sử MN cắt AB tại O'
=> O'A=O'B (trong hbh hai đường chéo cắt nhau tại trung điểm mỗi đường) => O' là trung điểm của AB
Mà O cũng là trung điểm của AB => O' trùng với O => M; O; N thẳng hàng
Gọi I là trung điểm của AB.
Giả sử đường thẳng IE cắt CD tại K1
Có: \(\frac{IA}{K_1D}=\frac{EI}{EK_1}=\frac{IB}{K_1C}\) (hệ quả định lý Ta lét)
mà IA = IB (gt) nên K1D = K1C, do đó K1 là trung điểm CD
Giả sử đường thẳng IF cắt CD tại K2
Có: \(\frac{IA}{K_2C}=\frac{FI}{FK_2}=\frac{IB}{K_2D}\) (hệ quả định lý Ta lét)
mà IA = IB (gt) nên K2C = K2D, do đó K2 là trung điểm CD
do IE và IF cùng đi qua trung điểm K của CD nên hai đường thẳng này trùng nhau
Vậy ta có đpcm
a: Xét tứ giác ADBC có
I lad trung điểm chung của AB và CD
nên ADBC là hình bình hành
=>AD//BC và AD=BC
b: Xét tứ giác AMBN có
AM//BN
AM=BN
DO đó: AMBN là hình bình hành
Gọi giao của AN và BM với CD lần lượt là E và F
Xét ΔADE có
M là trung điểm của DA
MF//AE
DO đó: F là trung điểm của DE
=>DF=FE(1)
Xét ΔCFB có
N la trung điểm của CB
NE//FB
DO đó: E là trung điểm của CF
=>CE=EF(2)
Từ (1) và (2) suy ra CE=EF=FD