Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B1, a, Xét tứ giác AEHF có: góc AFH = 90o ( góc nội tiếp chắn nửa đường tròn)
góc AEH = 90o (góc nội tiếp chắn nửa đường tròn )
Góc CAB = 90o ( tam giác ABC vuông tại A)
=> tứ giác AEHF là hcn(đpcm)
b, do AEHF là hcn => cũng là tứ giác nội tiếp => góc AEF = góc AHF ( hia góc nội tiếp cùng chắn cung AF)
mà góc AHF = góc ACB ( cùng phụ với góc FHC)
=> góc AEF = góc ACB => theo góc ngoài tứ giác thì tứ giác BEFC là tứ giác nội tiếp (đpcm)
c,gọi M là giao điểm của AI và EF
ta có:góc AEF = góc ACB (c.m.t) (1)
do tam giác ABC vuông tại A và có I là trung điểm của cạng huyền CB => CBI=IB=IA
hay tam giác IAB cân tại I => góc MAE = góc ABC (2)
mà góc ACB + góc ABC + góc BAC = 180o (tổng 3 góc trong một tam giác)
=> ACB + góc ABC = 90o (3)
từ (1) (2) và (3) => góc AEF + góc MAE = 90o
=> góc AME = 90o (theo tổng 3 góc trong một tam giác)
hay AI uông góc với EF (đpcm)
a) Từ O hạ OT vuông góc với MN tại T. Dễ thấy OE là trung trực AC nên OE vuông góc AC.
Mà AC // EM nên OE vuông góc EM. Từ đó ^OEM = ^OCM = ^OTM = 900, suy ra 5 điểm O,E,M,C,T cùng thuộc 1 đường tròn.
Tương tự, ta có 5 điểm O,F,B,N,T cùng thuộc 1 đường tròn. Do đó ^OTE = ^OCE = ^OAE = ^OBF = ^OTF.
Từ đó 3 điểm E,F,T thẳng hàng. Vậy thì ^OCT = ^ OEA = ^OEC = ^OTC.
Suy ra \(\Delta\)OCT cân tại O hay OT = OC. Khi đó MN tiếp xúc với (O) tại T. Theo tính chất 2 tiếp tuyến giao nhau:
BN = TN, CM = TM => BN + CM = MN (đpcm).
b) Gọi đường thẳng CR cắt (O) tại S. Ta sẽ chỉ ra S,B,Q thẳng hàng. Thật vậy:
Ta có: ^AQR + ^ACM = 1800 => ^AQR = 1800 - ^ACM = ^ABC = 1800 - ^ASR => Tứ giác ASRQ nội tiếp
=> ^RSQ = ^RAQ = 1800 - ^AQR - ^ARQ = 1800 - ^ABC - ^ACB = ^BAC = ^CSB.
Từ đó 3 điểm S,B,Q thẳng hàng (Vì SB trùng SQ). Vậy BQ và CR cắt nhau trên đường tròn (O) (đpcm).
c, Gọi K là giao điểm của DG và IF
Vì D là giao điểm của 2 tiếp tuyến
-=>\(AC\perp OD\)
=>ADO=CAB=FAE
=> tam giác ADO đồng dạng tam giác EAF
=> \(\frac{AD}{EA}=\frac{AO}{EF}\)
=> \(\frac{AD}{2IE}=\frac{\frac{1}{2}AB}{EF}\)=> \(\frac{AD}{IE}=\frac{AB}{EF}\)
=> Tam giác ADB đồng dạng tam giác EIF( 2 cạnh góc vuông )
=> ABD=IFE
=> tứ giác KBEF nội tiếp
=> FBK=90độ
=> \(GK\perp IF\)
Lại có \(IE\perp FG\),IE giao GK tại B
=> B là trực tâm của tam giác IFG
MÀ B cố định
=> ĐPCM