K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2017

\(\frac{\left(a+b\right)^2}{a^2+b^2}\)\(\frac{a^2+b^2+2ab}{a^2+b^2}\)= 1 + \(\frac{2ab}{a^2+b^2}\)

Ta có: a,b > 0

a2 + b2 >= 2\(\sqrt{a^2b^2}\) = 2ab

Tỉ số \(\frac{2ab}{a^2+b^2}\)càng nhỏ khi |a - b| càng lớn.

Mà 1 <= a,b <= 2

=> Max|a - b| = 1 khi a = 2, b = 1 hoặc a = 1, b = 2

Vậy, MinA = 1 + \(\frac{2.1.2}{1^2+2^2}\)= 1 + \(\frac{4}{5}\)\(\frac{9}{5}\)

Bài này nếu tính GTLN thì MaxA = 2 khi a = b

25 tháng 11 2017

Câu trả lời của tớ là : MaxA = 2 khi a = b

Ý tớ là đồng ý với kết quả của Chibi

tk nha

29 tháng 1 2020

\(1\le a\le2\Rightarrow\left(a-1\right)\left(a-2\right)\le0\) \(\Rightarrow a^2-3a+2\le0\Rightarrow a^2+2\le3a\)

\(\Rightarrow a+\frac{2}{a}\le3\)\(\Rightarrow\left(a+\frac{2}{a}\right)^2\le9\Rightarrow a^2+\frac{4}{a^2}\le5\)

Tương tự : \(b+\frac{2}{b}\le3\)\(b^2+\frac{4}{b^2}\le5\)

\(\Rightarrow a+\frac{2}{a}+a^2+\frac{4}{a^2}+b+\frac{2}{b}+b^2+\frac{4}{b^2}\le16\)

Áp dụng BĐT Cô-si,ta có : 

\(16=\left(a+b^2+\frac{4}{a^2}+\frac{2}{b}\right)+\left(b+a^2+\frac{4}{b^2}+\frac{2}{a}\right)\ge2\sqrt{\left(a+b^2+\frac{4}{a^2}+\frac{2}{b}\right)\left(b+a^2+\frac{4}{b^2}+\frac{2}{a}\right)}\)

\(\Leftrightarrow8\ge\sqrt{\left(a+b^2+\frac{4}{a^2}+\frac{2}{b}\right)\left(b+a^2+\frac{4}{b^2}+\frac{2}{a}\right)}\)

\(\Leftrightarrow A=\left(a+b^2+\frac{4}{a^2}+\frac{2}{b}\right)\left(b+a^2+\frac{4}{b^2}+\frac{2}{a}\right)\le64\)

Vậy GTLN của A là 64 \(\Leftrightarrow\orbr{\begin{cases}a=b=1\\a=b=2\end{cases}}\)

18 tháng 9 2019

Ta co:

\(P\ge21\left(a^2+b^2+c^2\right)+12\left(a+b+c\right)^2+\frac{2017.9}{2}\)

\(=21\left(a^2+b^2+c^2\right)+12\left(a+b+c\right)^2+\frac{18153}{2}\)

\(\Leftrightarrow\frac{P}{\left(a+b+c\right)^2}\ge21\left[\left(\frac{a}{a+b+c}\right)^2+\left(\frac{b}{a+b+c}\right)^2+\left(\frac{c}{a+b+c}\right)^2\right]+12+\frac{\frac{18153}{2}}{\left(a+b+c\right)^2}\)

Dat \(\left(\frac{a}{a+b+c};\frac{b}{a+b+c};\frac{c}{a+b+c}\right)\rightarrow\left(x;y;z\right)\)

\(\Rightarrow x+y+z=1\)

\(\Rightarrow\left(a+b+c\right)^2=\frac{a^2}{x^2}\)

BDT tro thanh:

\(\frac{P}{\left(a+b+c\right)^2}\ge21\left(x^2+y^2+z^2\right)+12+\frac{18153}{2\left(a+b+c\right)^2}\)

\(\Leftrightarrow\frac{P}{\frac{a^2}{x^2}}\ge21\left(x^2+y^2+z^2\right)+12+\frac{18153}{2\left(a+b+c\right)^2}\ge21.\frac{\left(x+y+z\right)^2}{3}+12+\frac{18153}{8}\)

\(\Leftrightarrow\frac{x^2P}{a^2}\ge7+12+\frac{18153}{8}\)

Ta lai co:\(x=\frac{a}{a+b+c}\ge\frac{a}{2}\Rightarrow a^2\le4x^2\)

Suy ra:\(\frac{x^2P}{a^2}\ge\frac{x^2P}{4x^2}=\frac{P}{4}\)

\(\Rightarrow\frac{P}{4}\ge\frac{18503}{8}\)

\(\Leftrightarrow P\ge\frac{18503}{2}\)

Dau '=' xay ra khi \(a=b=c=\frac{2}{3}\)

Vay \(P_{min}=\frac{18503}{2}\)khi \(a=b=c=\frac{2}{3}\)

8 tháng 12 2016

\(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)=2+\frac{a}{b}+\frac{b}{a}\) (1)

Không mất tính tổng quát, ta giả sử \(1\le a\le b\le2\). Ta có \(\frac{a}{b}\le1\)\(2\ge b\) , \(a\ge1\) \(\Rightarrow2a\ge b\Rightarrow\frac{a}{b}\ge\frac{1}{2}\) \(\Rightarrow\frac{1}{2}\le\frac{a}{b}\le1< 2\)

Ta có : \(\left(2-\frac{a}{b}\right)\left(\frac{1}{2}-\frac{a}{b}\right)\le0\Rightarrow1-\frac{2a}{b}-\frac{a}{2b}+\frac{a^2}{b^2}\le0\)

\(\Rightarrow1+\frac{a^2}{b^2}\le\frac{5}{2}.\frac{a}{b}\)\(\Rightarrow\frac{a}{b}+\frac{b}{a}\le\frac{5}{2}\) (2) (chia hai vế cho \(\frac{a}{b}\) ) 

Từ (1) và (2) ta suy ra \(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\le2+\frac{5}{2}=\frac{9}{2}\)

20 tháng 11 2017

a + b a 1 + b 1 = 2 + b a + a b (1) Không mất tính tổng quát, ta giả sử 1 ≤ a ≤ b ≤ 2. Ta có b a ≤ 1; 2 ≥ b , a ≥ 1 ⇒2a ≥ b⇒ b a ≥ 2 1 ⇒ 2 1 ≤ b a ≤ 1 < 2 Ta có : 2 − b a 2 1 − b a ≤ 0⇒1 − b 2a − 2b a + b 2 a 2 ≤ 0 ⇒1 + b 2 a 2 ≤ 2 5 . b a ⇒ b a + a b ≤ 2 5 (2) (chia hai vế cho b a ) Từ (1) và (2) ta suy ra a + b a 1 + b 1 ≤ 2 + 2 5 = 2 9 (

mk nghĩ vậy