Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho x,y thảo mãn \(2x^2+y^2+4=4x+2xy\)
tính giá trị của A =\(x^{2013}y^{2014}-x^{2014}y^{2013}+25xy\)
\(2x^2+y^2+4=4x+2xy\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(x-2\right)^2=0\Rightarrow\hept{\begin{cases}\left(x-y\right)^2=0\\\left(x-2\right)^2=0\end{cases}}\Leftrightarrow x=y=2\) (Tổng các bp)
Thế x=y=2 vào A: \(A=2^{2013}.2^{2014}-2^{2014}.2^{2013}+25.2.2=100\)
\(12\left(x^2+y^2\right)=25xy\Leftrightarrow\frac{12\left(x^2+y^2\right)}{xy}=25\)
\(\Leftrightarrow12\left(\frac{x}{y}+\frac{y}{x}\right)=25\)
Đặt \(\frac{x}{y}=t>1\Rightarrow12\left(t+\frac{1}{t}\right)=25\Leftrightarrow12t^2-25t+12=0\) \(\Rightarrow t=\frac{4}{3}\)
\(\Rightarrow Q=\frac{\frac{x}{y}+1}{\frac{x}{y}-1}=\frac{t+1}{t-1}=\frac{\frac{4}{3}+1}{\frac{4}{3}-1}=7\)
a, =-3y/5
b,A=x2-2x.1/2+1/4+3/4=(x-1/2)2+3/4 > hoặc=3/4 suy ra >0 với mọi x thuộc R
a: A+B
=x^2y+xyz+7y^2-25xy-xyz+x^2y-7y^2+xy
=-24xy+2x^y
A-B=x^2y+xyz+7y^2-25xy+xzy-x^2y+7y^2-xy
=2xyz+14y^2-26xy
b: Bậc của A là 3
bậc của B là 3
c: Khi x=-3;y=-1/2;z=0 thì:
A=9*(-1/2)+0+7*(-1/2)^2-25*(-3)*(-1/2)
=-9/2+7/4-75/2
=-42+7/4=-161/4
B=(-3)*(-1)*(-1/2)*0+(-3)^2*(-1/2)-7*1/4+(-3)*(-1/2)
=-9/2-7/4+3/2
=-3-7/4=-19/4
\(12x^2+13y^2=25xy\)
\(\Leftrightarrow12x^2-25xy+13y^2=0\)
\(\Leftrightarrow12x^2-12xy-13xy+13y^2=0\)
\(\Leftrightarrow12x\left(x-y\right)-13y\left(x-y\right)=0\)
\(\Leftrightarrow\left(12x-13y\right)\left(x-y\right)=0\)
\(\Rightarrow\orbr{\begin{cases}12x-13y=0\\x-y=0\end{cases}}\)
Mà để A xác định \(\Leftrightarrow x-y\ne0\) Do đó \(12x-13y=0\Leftrightarrow12x=13y\Rightarrow x=\frac{13}{12}y\)
\(\Rightarrow A=\frac{\frac{13}{12}y+y}{\frac{13}{12}y-y}=\frac{y\left(\frac{13}{12}+1\right)}{y\left(\frac{13}{12}-1\right)}=\left(\frac{13}{12}+1\right):\left(\frac{13}{12}-1\right)=\frac{25}{12}:\frac{1}{12}=25\)