Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số đường thẳng vẽ được qua các cặp điểm lúc ban đầu là n . n − 1 2 .
Nếu bớt đi một điểm thì số đường thẳng vẽ được qua các cặp điểm về sau là n − 1 . n − 2 2 .
Theo bài ra ta có: n . n − 1 2 − n − 1 . n − 2 2 = 10
⇔ n − 1 . n − n − 2 = 20 ⇔ n − 1 . 2 = 20 ⇔ n − 1 = 10 ⇔ n = 11
Vậy số điểm lúc đầu là 11.
Gọi n là số điểm phải có (trong đó không có ba điểm nào thẳng hàng) để vẽ được 36 đường thẳng n ∈ N , n > 3 .
Ta có: n . n − 1 2 = 36
Suy ra: n . n − 1 = 72 = 9 .8 .
Vì n và n-1 là hai số tự nhiên liên tiếp nên n = 9.
Vậy số điểm lúc ban đầu là 9 + 3 = 12.
Số đường thẳng vẽ được lúc ban đầu là 12 .11 2 = 66 .
a)Nếu trong 6 điểm đó không có ba điểm nào thẳng hàng thì sẽ vẽ được số đường thẳng là
\(\frac{6.\left(6-1\right)}{2}=\frac{6.5}{2}=15\)(đường thẳng)
b) Nếu 100 điểm trong đó không có 3 điểm nào thẳng hàng thì vẽ được số đường thẳng đi qua các cặp điểm là:
\(\frac{100.\left(100-1\right)}{2}=4950\)(đường thẳng)
1 điểm với 19 điểm còn lại tạo thành 19 đường thẳng,
mà có 20 điểm nên số đường thẳng được tạo thành là: 19.20= 380 (đường thẳng)
vì mỗi đường thẳng được lặp lại hai lần
Vậy thật ra tất cả số đường thẳng là: 380:2=190 (đường thẳng)
Lấy 1 điểm đi qua các điểm còn lại ta được 1x99 đường thẳng. Tương tự với 99 điểm còn lại ta được 100x99 đường thẳng mà mỗi đường thẳng được tính 2 lần nên ta có 100x99:2 =4950 đường thẳng.