K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2021

Bài 1:

Nếu p = 2 thì p + 2 = 2 + 2 = 4 không là số nguyên tố

2 + 4 = 6 không là số nguyên tố

Vậy p = 2 không thỏa mãn

Nếu p = 3 thì p + 2 = 3 + 2 = 5 là số nguyên tố

3 + 4 = 7 là số nguyên tố

Vậy p = 3 thỏa mãn

Nếu p > 3 thì p = 3k + 1 hoặc p = 3k + 2 

Khi p = 3k + 1 thì p + 2 = 3k + 1 + 2 = 3k + 3 = 3(k + 1) không là số nguyên tố

Vậy p = 3k + 1 không thỏa mãn

Khi p = 3k + 2 thì p + 4 = 3k + 2 + 4 = 3k + 6 = 3(k + 2) không là số nguyên tố

Vậy p = 3k + 2 không thỏa mãn

Vậy p = 3 thỏa mãn duy nhất.

26 tháng 2 2021

Bài 2:

Khi ta xét 3 số tự nhiên liên tiếp 4p; 4p + 1; 4p + 2 thì chắc chắn sẽ có một số chia hết cho 3

p là số nguyên tố; p > 3 nên p không chia hết cho 3 => 4p không chia hết cho 3

Ta thấy 2p + 1 là số nguyên tố; p > 3 => 2p + 1 > 3 nên 2p + 1 không chia hết cho 3 => 2(2p + 1) không chia hết cho 3 -> 4p + 2 không chia hết cho 3

Vì thế 4p + 1 phải chia hết cho 3

Mà p > 3 nên 4p + 1 > 3

=> 4p + 1 không là số nguyên tố. 4p + 1 là hợp số.

18 tháng 7 2015

b) +) Nếu p = 3k + 1 (k thuộc N)=> 2p2 + 1 = 2.(3k + 1)2 + 1 = 2.(9k2 + 6k + 1) + 1 = 18k2 + 12k + 2 + 1 = 18k2 + 12k + 3 chia hết cho 3 và lớn hơn 3 => 2p2 + 1 là hợp số (loại)

+) Nếu p = 3k + 2 (k thuộc N) => 2p2 + 1 = 2.(3k + 2)2 + 1 = 2.(9k2 + 12k + 4) + 1 = 18k2 + 24k + 8 + 1 = 18k2 + 24k + 9 chia hết cho 3 và lớn hơn 3 => 2p2 + 1 là hợp số (loại)

Vậy p = 3k, mà p là số nguyên tố => k = 1 => p = 3

18 tháng 7 2015

a) +) Nếu p = 1 => p + 1 = 2; p + 2 = 3; p + 4 = 5 là số nguyên tố

+) Nếu p > 1 :

p chẵn => p = 2k => p + 2= 2k + 2 chia hết cho 2 => p+ 2 là hợp số => loại

p lẻ => p = 2k + 1 => p + 1 = 2k + 2 chia hết cho 2 => p+1 là hợp số => loại

Vậy p = 1

c) p = 2 => p + 10 = 12 là hợp số => loại

p = 3 => p + 10 = 13; p+ 14 = 17 đều là số nguyên tố => p = 3 thỏa mãn

Nếu p > 3 , p có thể có dạng

+ p = 3k + 1 => p + 14 = 3k + 15 chia hết cho 3 => loại p = 3k + 1

+ p = 3k + 2 => p + 10 = 3k + 12 là hợp số => loại p = 3k + 2

Vậy p = 3

8 tháng 11 2014

a; nếu p=3 thì p+2=5 , p+4=7 đều là số nguyên tố

    nếu p>3 thì p có 2 dạng : p=3k+1, p=3k+2

     với p=3k+1 thì p+2=3k+1+2=3k+3 chia hết cho 3 => p+2 là hợp số

    với p=3k+2 thì p+4=3k+2+4=3k+6 '''''''''''''''''''''''''''''''''''''''''''' =>p+4 là hợp số

                         Vậy p=3 thỏa mãn đề bài 

 

     các phần còn lại tương tự

 

BÀI 1: SỐ HỌC SINH KHỐI 6 CỦA TRƯỜNG KHI XẾP THÀNH 12 HÀNG, 15 HÀNG HAY 18 HÀNG ĐỀU DƯ RA 9 HỌC SINH. HỎI SỐ HỌC SINH KHỐI 6 TRƯỜNG ĐÓ LÀ BAO NHIÊU ? BIẾT RẰNG SỐ ĐÓ LỚN HƠN 300 VÀ NHỎ HƠN 400.BÀI 2: TÌM SỐ TỰ NHIÊN n SAO CHO:a/ n + 3 CHIA HẾT CHO n - 1b/ 4n + 3 CHIA HẾT CHO 2n + 1c/ (n + 5)(n - 3) = 15BÀI 3: CHO p LÀ SỐ NGUYÊN TỐ VÀ MỘT TRONG 2 SỐ 8p + 1 VÀ 8p - 1 LÀ HAI SỐ NGUYÊN TỐ. HỎI SỐ NGUYÊN TỐ...
Đọc tiếp

BÀI 1: SỐ HỌC SINH KHỐI 6 CỦA TRƯỜNG KHI XẾP THÀNH 12 HÀNG, 15 HÀNG HAY 18 HÀNG ĐỀU DƯ RA 9 HỌC SINH. HỎI SỐ HỌC SINH KHỐI 6 TRƯỜNG ĐÓ LÀ BAO NHIÊU ? BIẾT RẰNG SỐ ĐÓ LỚN HƠN 300 VÀ NHỎ HƠN 400.

BÀI 2: TÌM SỐ TỰ NHIÊN n SAO CHO:

a/ n + 3 CHIA HẾT CHO n - 1

b/ 4n + 3 CHIA HẾT CHO 2n + 1

c/ (n + 5)(n - 3) = 15

BÀI 3: CHO p LÀ SỐ NGUYÊN TỐ VÀ MỘT TRONG 2 SỐ 8p + 1 VÀ 8p - 1 LÀ HAI SỐ NGUYÊN TỐ. HỎI SỐ NGUYÊN TỐ THỨ 3 LÀ SỐ NGUYÊN TỐ HAY HỢP SỐ ?

BÀI 4: TÌM SỐ NGUYÊN TỐ p SAO CHO p + 10 VÀ p + 14 LÀ CÁC SỐ NGUYÊN TỐ.

BÀI 5: A/ TÌM HAI SỐ TỰ NHIÊN a, b BIẾT BCNN (a, b) = 300, ƯCLN (a, b) = 15

          B/ TÌM HAI SỐ TỰ NHIÊN a VÀ b BIẾT a, b = 2940 VÀ BCNN (a, b) = 210

BÀI 5: HỎI QUA n ĐIỂM PHÂN BIỆT CÓ BAO NHIÊU ĐOẠN THẲNG BIẾT CỨ QUA 2 ĐIỂM TA VẼ ĐƯỢC 1 ĐOẠN THẲNG.

BÀI 6: CHO n ĐIỂM PHÂN BIỆT ( n ≥ 2, n Є N ) CỨ QUA 2 ĐIỂM TA VẼ ĐƯỢC 1 ĐOẠN THẲNG VÀ QUA n ĐIỂM VẼ ĐƯỢC TẤT CẢ 300 ĐOẠN THẲNG. HỎI n BẰNG BAO NHIÊU ?

BÀI 7: CHO ĐOẠN THẲNG CD. TRÊN TIA ĐỐI CỦA TIA CD LẤY ĐIỂM A. TRÊN TIA ĐỐI CỦA TIA DC LẤY ĐIỂM B SAO CHO AC = BD. CHỨNG TỎ: AD = BC

 

 

0
16 tháng 9 2023

1. Đặt \(ƯCLN\left(5n+3,6n+1\right)=d\) với \(d\ne1\)

\(\Rightarrow\left\{{}\begin{matrix}5n+3⋮d\\6n+1⋮d\end{matrix}\right.\) 

\(\Rightarrow\left\{{}\begin{matrix}30n+18⋮d\\30n+5⋮d\end{matrix}\right.\)

\(\Rightarrow13⋮d\)

\(\Rightarrow d\in\left\{1,13\right\}\)

Nhưng vì \(d\ne1\) nên \(d=13\). Vậy \(ƯCLN\left(5n+3,6n+1\right)=13\)

2. Gọi \(ƯCLN\left(4n+3,5n+4\right)=d\) 

\(\Rightarrow\left\{{}\begin{matrix}4n+3⋮d\\5n+4⋮d\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}20n+15⋮d\\20n+16⋮d\end{matrix}\right.\)

\(\Rightarrow1⋮d\) 

\(\Rightarrow d=1\)

 Vậy \(ƯCLN\left(4n+3,5n+4\right)=1\) nên 2 số này nguyên tố cùng nhau. (đpcm)

 3: Tương tự 2 nhưng khi đó \(d\in\left\{1,2\right\}\). Nhưng vì cả 2 số \(2n+1,6n+5\) đều là số lẻ nên chúng không thể có ƯC là 2. Vậy \(d=1\)

 4. Tương tự 3.

 

 

AH
Akai Haruma
Giáo viên
16 tháng 9 2023

Bạn nên tách riêng rẽ từng bài ra để đăng cho mọi người quan sát dễ hơn nhé.