K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2020

Mình cần gấp bn nào xong  trước mình hs cho

4 tháng 3 2020

Ta có: \(b< c\Rightarrow b-c< 0\)

Kết hợp với \(b+c< a+\)

\(\Rightarrow\left(b-c\right)+\left(b+c\right)< 0+\left(a+1\right)\)

\(\Rightarrow2b< a+1\)

Lại có: \(1< a\Rightarrow a+1< 2a\)

Suy ra \(2b< a+1< 2a\Rightarrow2b< 2a\)

\(\Rightarrow b< a\)(đpcm)

18 tháng 4 2023

loading...

Tham khảo nhé !

27 tháng 6 2018

\(x^2=a^2+b^2+ab\)

\(\Leftrightarrow x^4=a^4+b^4+3a^2b^2+2a^3b+2ab^3\)

\(\Leftrightarrow2x^4=2a^4+2b^4+6a^2b^2+4a^3b+4ab^3\)

\(\Leftrightarrow2x^4=a^4+b^4+\left(a^2\right)^2+\left(b^2\right)^2+\left(2ab\right)^2+2a^2b^2+4a^3b+4ab^3\)

\(\Leftrightarrow2x^4=a^4+b^4+\left(a^2+2ab+b^2\right)^2\)

\(\Leftrightarrow2x^4=a^4+b^4+\left[\left(a+b\right)^2\right]^2\)

\(\Leftrightarrow2x^4=a^4+b^4+\left(a+b\right)^4\)

\(\Leftrightarrow2x^4=a^4+b^4+c^4\)(đpcm)

10 tháng 9 2020

               Bài làm :

Ta có :

\(x^2=a^2+b^2+ab\)

\(\Leftrightarrow x^4=a^4+b^4+3a^2b^2+2a^3b+2ab^3\)

\(\Leftrightarrow2x^4=2a^4+2b^4+6a^2b^2+4a^3b+4ab^3\)

\(\Leftrightarrow2x^4=a^4+b^4+\left(a^2\right)^2+\left(b^2\right)^2+\left(2ab\right)^2+2a^2b^2+4a^3b+4ab^3\)

\(\Leftrightarrow2x^4=a^4+b^4+\left(a^2+2ab+b^2\right)^2\)

\(\Leftrightarrow2x^4=a^4+b^4+\left[\left(a+b\right)^2\right]^2\)

\(\Leftrightarrow2x^4=a^4+b^4+\left(a+b\right)^4\)

\(\Leftrightarrow2x^4=a^4+b^4+c^4\)

=> Điều phải chứng minh

NV
5 tháng 5 2021

Ta có:

\(\left\{{}\begin{matrix}a^2+1\ge2a\\a^2b^2+4\ge4ab\\a^2b^2c^2+16\ge8abc\end{matrix}\right.\)

Nhân vế với vế:

\(\left(a^2+1\right)\left(a^2b^2+4\right)\left(a^2b^2c^2+16\right)\ge64a^3b^2c\)

Dấu "=" xảy ra khi và chỉ khi: \(\left\{{}\begin{matrix}a=1\\b=2\\c=2\end{matrix}\right.\)

NV
5 tháng 5 2021

a.

\(\Leftrightarrow2a^2b^2+2b^2c^2+2c^2a^2\ge2abc\left(a+b+c\right)\)

\(\Leftrightarrow\left(a^2b^2-2a^2bc+c^2a^2\right)+\left(a^2b^2-2ab^2c+b^2c^2\right)+\left(b^2c^2-2abc^2+a^2c^2\right)\ge0\)

\(\Leftrightarrow\left(ab-ca\right)^2+\left(ab-bc\right)^2+\left(bc-ca\right)^2\ge0\) (luôn đúng)

Vậy BĐT đã cho đúng

b.

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)\ge3abc\left(a+b+c\right)\)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2\ge abc\left(a+b+c\right)\) (đúng theo câu a đã chứng minh)

1 tháng 9 2016

Giả sử: \(a^4\left(b-c\right)+b^4\left(c-a\right)=c^4\left(b-a\right)\)
     \(\Leftrightarrow a^4\left(b-a+a-c\right)+b^4\left(c-a\right)-c^4\left(b-a\right)=0\)
    \(\Leftrightarrow a^4\left(b-a\right)+a^4\left(a-c\right)+b^4\left(c-a\right)-c^4\left(b-a\right)=0\)  
    \(\Leftrightarrow\left(b-a\right)\left(a^4-c^4\right)+\left(a-c\right)\left(a^4-b^4\right)=0\)
\(\Leftrightarrow\left(b-a\right)\left(a-c\right)\left(a+c\right)\left(a^2+c^2\right)+\left(a-c\right)\left(a-b\right)\left(a+b\right)\left(a^2+b^2\right)=0\)
\(\Leftrightarrow\left(b-a\right)\left(c-a\right)\left\{\left(a+c\right)\left(a^2+c^2\right)-\left(a+b\right)\left(a^2+b^2\right)\right\}=0\)
 \(\Leftrightarrow\left(a+c\right)\left(a^2+c^2\right)-\left(a+b\right)\left(a^2+b^2\right)=0\)( do a, b, c phân biệt).
\(\Leftrightarrow ac^2+a^2c+c^3-ab^2-a^2b-b^3=0\)
 \(\Leftrightarrow a^2\left(c-b\right)+a\left(c^2-b^2\right)+\left(c^3-b^3\right)=0\)
\(\Leftrightarrow\left(c-b\right)\left(a^2+a\left(b+c\right)+b^2+bc+c^2\right)=0\)
 \(\Leftrightarrow\left(c-b\right)\left(a^2+2.a\frac{b+c}{2}+\frac{b^2+2bc+c^2}{4}+\frac{3b^2+2bc+3c^2}{4}\right)=0\)
\(\Leftrightarrow\left(c-b\right)\left(\left(a+\frac{b+c}{2}\right)^2+\frac{2b^2+3bc+2c^2}{4}\right)=0\)(*).
Do \(\left(a+\frac{b+c}{2}\right)^2\ge0,\frac{2b^2+3bc+2c^2}{4}>0\).
Nên (*) không thể xảy ra. Vậy điều giả sử sai, ta có đpcm.
 

1 tháng 9 2016

Đặt A = a4(b - c) + b4(c - a) + c4(a - b) = a4(b - a + a - c) + b4(c - a) + c4(a - b) = a4(b - a) + a4(a - c) + b4(c - a) + c4(a - b)

          = (a - b)(c4 - a4) + (a - c)(a4 - b4) = (a - b)(c - a)(c + a)(c2 + a2) + (a - c)(a - b)(a + b)(a2 + b2)

          = (a - b)(a - c)[(a + b)(a2 + b2) - (c + a)(c2 + a2)] = (a - b)(a - c)(a3 + ab2 + a2b + b- c3 - a2c - ac2 - a3)

          = (a - b)(a - c)[a2(b - c) + a(b2 - c2) + (b3 - c3)] = (a - b)(a - c)(b - c)[a2 + a(b + c) + b2 + bc + c2]

          = (a - b)(a - c)(b - c)\(\frac{a^2+2ab+b^2+a^2+2ac+c^2+b^2+2bc+c^2}{2}\) 

          =\(\frac{\left(a-b\right)\left(a-c\right)\left(b-c\right)\left[\left(a+b\right)^2+\left(a+c\right)^2+\left(b+c\right)^2\right]}{2}\)

Vì a,b,c là 3 số phân biệt nên A khác 0 <=> a4(b - c) + b4(c - a)\(\ne-c^4\left(a-b\right)=c^4\left(b-a\right)\)

14 tháng 10 2020

1. Gọi ƯCLN (a,c) =k, ta có : a=ka1, c=kc1 và (a1,c1)=1

Thay vào ab=cd được ka1b=bc1d nên

a1b=c1d  (1)

Ta có: a1\(⋮\)c1 mà (a1,c1)=1 nên b\(⋮\)c1. Đặt b=c1m ( \(m\in N\)*) , thay vào (1) được a1c1m =  c1d nên a1m=d

Do đó: \(a^5+b^5+c^5+d^5=k^5a_1^5+c_1^5m^5+k^5c_1^5+a_1^5m^5\)

\(=k^5\left(a_1^5+c_1^5\right)+m^5\left(a_1^5+c_1^5\right)=\left(a_1^5+c_1^5\right)\left(k^5+m^5\right)\)

Do a1, c1, k, m là các số nguyên dương nên \(a^5+b^5+c^5+d^5\)là hợp số (đpcm)

14 tháng 10 2020

2. Nhận xét: 1 số chính phương khi chia cho 3 chỉ có thể sư 0 hoặc 1.

Ta có \(a^2+b^2⋮3\). Xét các TH của tổng 2 số dư : 0+0, 0+1,1+1, chỉ có 0+0 \(⋮\)3.

Vậy \(a^2+b^2⋮3\)thì a và b \(⋮3\)

b) Nhận xét: 1 số chính phương khi chia cho 7 chỉ có thể dư 0,1,2,4 (thật vậy, xét a lần lượt bằng 7k, \(7k\pm1,7k\pm2,7k\pm3\)thì a2 chia cho 7 thứ tự dư 0,1,4,2)

Ta có: \(a^2+b^2⋮7\). Xét các TH của tổng 2 số dư : 0+0, 0+1, 0+2, 0+4 , 1+1, 1+2, 2+2, 1+4, 2+4, 4+4; chỉ có 0+0 \(⋮7\). Vậy......

Bài 2: 

\(A=\left(2ac-a^2-c^2+b^2\right)\left(2ac+a^2+c^2-b^2\right)\)

\(=\left[b^2-\left(a-c\right)^2\right]\left[\left(a+c\right)^2-b^2\right]\)

\(=\left(b-a+c\right)\left(b+a-c\right)\left(a+c-b\right)\left(a+c+b\right)\)>0

AH
Akai Haruma
Giáo viên
11 tháng 9 2021

Lời giải:
Đặt $\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=t$

$\Rightarrow x=at, y=bt, z=ct$

Khi đó:

$(x^2+y^2+z^2)(a^2+b^2+c^2)=(a^2t^2+b^2t^2+c^2t^2)(a^2+b^2+c^2)$

$=t^2(a^2+b^2+c^2)(a^2+b^2+c^2)$

$=t^2(a^2+b^2+c^2)^2=[t(a^2+b^2+c^2)]^2$

$=(at.a+bt.b+ct.c)^2=(xa+yb+zc)^2$

Ta có đpcm.