K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Chọn C

19 tháng 4 2023

em muốn hỏi cách làm ấy ạ? hướng giải là như nào ấy ạ

NV
6 tháng 9 2021

\(f\left(0\right)=\dfrac{b}{d}\Rightarrow f\left(f\left(0\right)\right)=0\Rightarrow f\left(\dfrac{b}{d}\right)=0\)

\(\Rightarrow\dfrac{\dfrac{ab}{d}+b}{\dfrac{cb}{d}+d}=0\Rightarrow b\left(a+d\right)=0\Rightarrow\left[{}\begin{matrix}b=0\\d=-a\end{matrix}\right.\)

TH1: \(b=0\)

\(f\left(1\right)=1\Rightarrow a=c+d\)

\(f\left(2\right)=2\Rightarrow2a=2\left(2c+d\right)\Rightarrow a=2c+d\) 

\(\Rightarrow2c+d=c+d\Rightarrow c=0\) (ktm)

TH2: \(d=-a\)

\(f\left(1\right)=1\Rightarrow a+b=c+d=c-a\Rightarrow2a+b=c\) (1)

\(f\left(2\right)=2\Rightarrow2a+b=2\left(2c+d\right)=2\left(2c-a\right)\Rightarrow4a+b=4c\) (2)

Trừ (2) cho (1) \(\Rightarrow2a=3c\Rightarrow\dfrac{a}{c}=\dfrac{3}{2}\)

\(\Rightarrow\lim\limits_{x\rightarrow\infty}\dfrac{ax+b}{cx+d}=\dfrac{a}{c}=\dfrac{3}{2}\)

Hay \(y=\dfrac{3}{2}\) là tiệm cận ngang

8 tháng 7 2018

Đáp án: C.

Vì lnC mới là số thực tùy ý, D sai vì không cộng hằng số C vào biến.

29 tháng 1 2019

Đáp án: C.

Vì lnC mới là số thực tùy ý, D sai vì không cộng hằng số C vào biến.

AH
Akai Haruma
Giáo viên
6 tháng 5 2018

Lời giải:

\(f'(x)=(x^2-1)(x+1)(5-x)=(x+1)^2(x-1)(5-x)\)

Ta thấy \((x-1)(5-x)\geq 0, \forall x\in [1;5]\Rightarrow f'(x)=(x+1)^2(x-1)(5-x)\geq x\in [1;5]\)

Lập bảng biến thiên ta thấy hàm số đồng biến trên đoạn $[1;5]$ do đó :

\(f(1)< f(2)< f(4)\)

Đáp án B

6 tháng 5 2018

f'(x)>=0 x thuoc [1;5]

qua du kl f(x) dong bien

=>viec Lap bang thien la viec lam thua vo bo

dap khuon robot

NV
4 tháng 5 2019

\(y'=\frac{5\left(x^2+4\right)-2x.5x}{\left(x^2+4\right)}f'\left(\frac{5x}{x^2+4}\right)=\frac{5\left(4-x^2\right)}{x^2+4}f'\left(\frac{5x}{x^2+4}\right)\)

\(=\frac{5\left(2-x\right)\left(2+x\right)}{\left(x^2+4\right)}.\left(\frac{5x}{x^2+4}\right)^2.\left(\frac{5x}{x^2+4}-1\right)\left(\frac{65x}{x^2+4}-15\right)^3\)

\(=\frac{5\left(2-x\right)\left(2+x\right).25x^2\left(x-4\right)\left(1-x\right)\left(x-3\right)^3\left(4-3x\right)^3.5^3}{\left(x^2+4\right)^7}\)

Ta thấy \(y'=0\) có 7 nghiệm nhưng nghiệm \(x=0\) có mũ chẵn nên hàm số có 6 điểm cực trị

18 tháng 3 2019

Chọn đáp án B

AH
Akai Haruma
Giáo viên
19 tháng 12 2017

Lời giải:

\(a+b=3\Rightarrow a+(b-2)=1\Rightarrow b-2=1-a\)

Ta có:

\(f(x)=\frac{9^x}{9^x+3}\Rightarrow f(a)=\frac{9^a}{9^a+3}\) (1)

\(f(b-2)=f(1-a)=\frac{9^{1-a}}{9^{1-a}+3}=\frac{9}{9^a\left(\frac{9}{9^a}+3\right)}\)

\(=\frac{9}{9+3.9^a}=\frac{3}{3+9^a}\) (2)

Từ (1),(2) suy ra \(f(a)+f(b-2)=\frac{9^a}{9^a+3}+\frac{3}{3+9^a}=\frac{9^a+3}{9^a+3}=1\)

Đáp án A