Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(0,2=\frac{1}{5};3\frac{1}{3}=\frac{10}{3}\)
Ta có: Gọi 3 phần đó là \(a;b;c\) ta có: \(\frac{a}{\frac{1}{5}}=\frac{b}{\frac{10}{3}}=\frac{c}{\frac{4}{5}}\Leftrightarrow5a=\frac{3b}{10}=\frac{5c}{4}\)
\(\Rightarrow\frac{5a}{15}=\frac{3b}{150}=\frac{5c}{60}\Leftrightarrow\frac{a}{3}=\frac{b}{50}=\frac{c}{12}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có: \(\frac{a}{3}=\frac{b}{50}=\frac{c}{12}=\frac{a+b+c}{3+50+12}=\frac{786}{65}\)
Nhân ra là ra a;b;c
Gọi ba phần cần tìm lần lượt là a,b,c
Theo đề, ta có: \(\dfrac{1}{5}a=\dfrac{10}{3}b=\dfrac{4}{5}c\)
=>\(\dfrac{a}{5}=\dfrac{b}{\dfrac{5}{4}}=\dfrac{c}{\dfrac{3}{10}}\)
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{a}{5}=\dfrac{b}{\dfrac{5}{4}}=\dfrac{c}{\dfrac{3}{10}}=\dfrac{a+b+c}{5+\dfrac{5}{4}+\dfrac{3}{10}}=\dfrac{786}{\dfrac{131}{20}}=120\)
=>a=600; b=150; c=36
#)Trả lời :
Câu 1 :
a) Gọi ba phần đó là a, b, c
Theo đầu bài, ta có : a, b, c tỉ lệ thuận với 3; 4; 5 => \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)và a + b + c = 552
Áp dụng tính chất dãy tỉ số bằng nhau ( đến đây bn tự lm típ hen )
b) Gọi ba phần đó là a, b, c
Theo đầu bài, ta có : a, b, c tỉ lệ nghịch với 3, 4, 6 => a, b, c tỉ lệ nghịch với \(\frac{1}{3};\frac{1}{4};\frac{1}{6}\)
=> \(\frac{a}{\frac{1}{3}}=\frac{b}{\frac{1}{4}}=\frac{c}{\frac{1}{6}}\)và a + b + c = 315
Áp dụng tính chất dãy tỉ số bằng nhau ( đến đây tự lm típ hen :D )
Câu 2 :
\(\frac{x}{11}=\frac{y}{12}\Rightarrow\frac{2x}{22}=\frac{y}{12}\left(1\right)\)
\(\frac{y}{3}=\frac{z}{7}\Rightarrow\frac{y}{12}=\frac{z}{28}\left(2\right)\)
Từ (1) và (2) suy ra \(\frac{2x}{22}=\frac{y}{12}=\frac{z}{28}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{2x}{22}=\frac{y}{12}=\frac{z}{28}=\frac{2x-y+z}{22-12+28}=\frac{152}{38}\)
\(\Rightarrow x=44;y=48;z=112\)
#~Will~be~Pens~#
1a) Gọi ba phần đó là x, y, z.
Vì x, y, z tỉ lệ với 3, 4, 5 nên \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
Áp dụng tính chất của dãy các tỉ số bằng nhau, ta có:
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{3+4+5}=\frac{552}{12}=46\)
\(\Rightarrow\hept{\begin{cases}x=46.3=138\\y=46.4=184\\z=46.5=230\end{cases}}\)
Vậy 3 phần đó là 138, 184, 230
a) Gọi 3 phần đó lần lượt là x;y;z
=>x/2 = y/3=z/5
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/2=y/3=z/5=z+y+z/2+3+5 = 480/10 = 48
x/2 = 48 => x = 96
y/3 = 48 => y = 144
z/5=48 =>z=240
Gọi 3 phần số 786 chia ra là a,b,c
Áp dung Tc của dãy tỉ số bằng nhau , ta có:
\(\frac{a}{0.2}=\frac{b}{3\frac{1}{3}}=\frac{c}{\frac{4}{5}}=\frac{a+b+c}{0.2+3\frac{1}{3}+\frac{4}{5}}=\frac{786}{\frac{13}{3}}\)