Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Gọi ba phần đó là a, b, c
a) Ta có: \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\) và a + b + c = 310
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{310}{10}=31\)
+) \(\frac{a}{2}=31\Rightarrow a=62\)
+) \(\frac{b}{3}=31\Rightarrow b=93\)
+) \(\frac{c}{5}=31\Rightarrow c=155\)
Vậy 3 phần đó là 62; 93; 155
b) Ta có: \(2a=3b=5c\) và a + b + c = 310
\(\Rightarrow\frac{2a}{30}=\frac{3b}{30}=\frac{5c}{30}\)
\(\Rightarrow\frac{a}{15}=\frac{b}{10}=\frac{c}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{a}{15}=\frac{b}{10}=\frac{c}{6}=\frac{a+b+c}{15+10+6}=\frac{310}{31}=10\)
+) \(\frac{a}{15}=10\Rightarrow a=150\)
+) \(\frac{b}{10}=10\Rightarrow b=100\)
+) \(\frac{c}{6}=10\Rightarrow c=60\)
Vậy 3 phần đó là 150; 100; 60
gọi 3 phần dc chia bởi số 310 lần lượt là x, y, z
a) theo đề bài ta có \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\) và X + Y + Z = 310
theo tính chất của dãy tỉ số bằng nhau ta có
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x+y+z}{2+3+5}=\dfrac{310}{10}=31\)
\(\Rightarrow x=31.2=62\)
\(\Rightarrow y=31.3=93\)
\(\Rightarrow z=31.5=155\)
Zậy 3 phần dc chia bởi số 310 lần lượt là 62, 93, 155
b) theo đề bài ta có 2x = 3y = 5z và x + y + z = 310
\(\Rightarrow\dfrac{2x}{30}=\dfrac{3y}{30}=\dfrac{5z}{30}\)
\(\Rightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}\)
theo tính chất của dãy tỉ số bằng nhau ta có
\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}=\dfrac{x+y+z}{15+10+6}=\dfrac{310}{31}=10\)
\(\Rightarrow x=15.10=150\)
\(\Rightarrow y=10.10=100\)
\(\Rightarrow z=6.10=60\)
Vậy 3 phần dc chia bởi số 310 lần lượt là 150, 100, 60
a) Gọi 3 phần đó lần lượt là x;y;z
=>x/2 = y/3=z/5
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/2=y/3=z/5=z+y+z/2+3+5 = 480/10 = 48
x/2 = 48 => x = 96
y/3 = 48 => y = 144
z/5=48 =>z=240
Gọi ba số đó là a, b, c
Ta có: a, b, c lần lượt tỉ lệ với 2, 3, 5 hay a:b:c = 2 :3 : 5
=> a/2 = b/3 = c/5 và a + b + c = 480
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{480}{10}=48.\)
\(\frac{a}{2}=48\Rightarrow a=48\cdot2=96\)
\(\frac{b}{3}=48\Rightarrow b=48\cdot3=144\)
\(\frac{c}{5}=48\Rightarrow c=48\cdot5=240\)
Vậy ba số cần tìm là 96, 144, 240
a)Vì x;y;z tỉ lệ thuận với 2;3;5 nên x:y:z=2:3:5
x:|===|===|
y:|===|===|===|
z:|===|===|===|===|===|
62;93;155
Gọi khối lượng 3 phần lần lượt là x,y,z (kg) (x,y,z > 0)
Vì tổng 3 phần là 1 tấn = 1000 kg nên x+y+z = 1000
Vì 3 phần có khối lượng tỉ lệ thuận với 2;3;5 nên \(\dfrac{x}{2} = \dfrac{y}{3} = \dfrac{z}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\begin{array}{l}\dfrac{x}{2} = \dfrac{y}{3} = \dfrac{z}{5} = \dfrac{{x + y + z}}{{2 + 3 + 5}} = \dfrac{{1000}}{{10}} = 100\\ \Rightarrow x = 100.2 = 200\\y = 100.3 = 300\\z = 100.5 = 500\end{array}\)
Vậy 3 phần cần chia có khối lượng lần lượt là 200 kg, 300 kg, 500 kg.
Gọi 3 số đó lần lượt là a , b , c
Theo đề bài , ta có :
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\) và a + b + c = 480
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{480}{10}=48\)
\(\Rightarrow\begin{cases}a=2.48=96\\b=3.48=144\\c=5.48=240\end{cases}\)
Giải:
Gọi 3 phần đó là a, b, c ( a, b, c > 0 )
Ta có: \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\) và a + b + c = 480
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{480}{10}=48\)
+) \(\frac{a}{2}=48\Rightarrow a=96\)
+) \(\frac{b}{3}=48\Rightarrow b=144\)
+) \(\frac{c}{5}=48\Rightarrow c=240\)
Vậy các phần của số 480 lần lượt là 96, 144 và 240