Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho điểm A nằm ngoài đường thẳng d và có khoảng cách đến d bằng 2cm. lấy điểm B bất kì thuộc đường thằng d. Gọi C là điểm đối xứng với điểm A qua điểm B. Khi điểm B di chuyển trên đường thẳng d thì điểm C di chuyển trên đường nào ?
Bài giải:
Kẻ AH và CK vuông góc với d.
Ta có AB = CB (gt)
= ( đối đỉnh)
nên ∆AHB = ∆CKB (cạnh huyền - góc nhọn)
Suy ra CK = AH = 2cm
Điểm C cách đường thẳng d cố định một khoảng cách không đổi 2cm nên C di chuyển trên đường thẳng m song song với d và cách d một khoảng bằng 2cm.
Vt lại đề nhé (khó nhìn)
Cho \(\dfrac{a}{b}=\dfrac{c}{d}\)
Chứng minh : \(\dfrac{5a+3b}{5c+3d}=\dfrac{5a-3b}{5c-3d}\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=x\Rightarrow a=bx;c=dx\)
Lần lượt thay vào các vế, ta được :
\(\dfrac{5a+3b}{5a-3b}=\dfrac{5.b.x+3b}{5.b.x+3b}=\dfrac{b\left(5x+3\right)}{b\left(5x+3\right)}=\dfrac{5x+3}{5x+3}\left(1\right)\)
\(\dfrac{5c-3d}{5c-3d}=\dfrac{5.d.x-3d}{5.d.x-3d}=\dfrac{d\left(5x-3\right)}{d\left(5x-3\right)}=\dfrac{5x-3}{5x-3}\left(2\right)\)
Từ \(\left(1\right)và\left(2\right)\)
\(\Rightarrow\dfrac{5a+3b}{5c+3d}=\dfrac{5a-3b}{5c-3d}\left(đpcm\right)\)
Từ \(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\)\(\frac{a}{c}=\frac{b}{d}\)\(\Rightarrow\)\(\frac{5a}{5c}=\frac{3b}{3d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{5a}{5c}=\frac{3b}{3d}=\frac{5a+3b}{5c+3d}=\frac{5a-3b}{5c-3d}\)
Từ \(\frac{5a+3b}{5c+3d}=\frac{5a-3b}{5c-3d}\)\(\Rightarrow\)\(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\)(đpcm)
_Chúc bạn học tốt_
a) Vì a/b=c/d nên a/c=b/d=>5a/5c=3b/3d=5a+3b/5c+3d=5a-3b/5a-3d(tính chất dãy tỉ số bằng nhau)(đpcm)
b)con b làm tương tự con a thôi
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
Ta có: \(\dfrac{a-b}{c-d}=\dfrac{bk-b}{dk-d}=\dfrac{b}{d}\)
\(\dfrac{2a-3b}{2c-3d}=\dfrac{2bk-3b}{2dk-3d}=\dfrac{b}{d}\)
Do đó: \(\dfrac{a-b}{c-d}=\dfrac{2a-3b}{2c-3d}\)
phá ngoặc lun nà
+4a-5c+3b-2b+a-7c-7b+3c-5a=(4a+a-5a)+(3b-2b-7b)+(-5c-7c+3c)=0-6b-9c=-9c-6b
-2a+3c-b-5b-4c+12a+9b+4c-4a-6a-3b-3c+d=(-2a+12a-4a-6a)+(-b-5b+9b-3b)+(3c-4c+4c-3c)+d=0+0+0+0+d=d
Đặt \(\frac{a}{b}=\frac{c}{d}=k=>a=bk,c=dk\)
=>\(\frac{5a+3b}{5a-3b}=\frac{5.bk+3b}{5.bk-3b}=\frac{5.bk-3b+3b+3b}{5.bk-3b}=1+\frac{6b}{\left(5k-3\right).b}=1+\frac{6}{5k-3}\)
\(\frac{5c+3d}{5c-3d}=\frac{5.dk+3d}{5.dk-3d}=\frac{5.dk-3d+3d+3d}{5.dk-3d}=1+\frac{6d}{\left(5k-3\right).d}=1+\frac{6}{5k-3}\)
=>\(\frac{5a+3b}{5a-3b}=1+\frac{6}{5k-3}=\frac{5c+3d}{5c-3d}\)
=>\(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\)