Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/\(9x^2+6x-575=\left(3x\right)^2+2.3x.1+1-576=\left(3x+1\right)^2-24^2=\left(3x-23\right)\left(3x+25\right)\)
2/\(81x^4+4=81x^4+36x^2+4-36x^2=\left(9x^2+2\right)^2-\left(6x\right)^2\)
\(=\left(9x^2-6x+2\right)\left(9x^2+6x+2\right)\)
3/đặt \(t=x^2+8x+7\) thì đa thức cần phân tích:
t(t+8)+15=t2+8t+15=t2+3t+5t+15=t(t+3)+5(t+3)=(t+3)(t+5)=(x2+8x+10)(x2+8x+12)=(x2+8x+10)(x2+2x+6x+12)
=(x2+8x+10)[x(x+2)+6(x+2)]=(x2+8x+10)(x+2)(x+6)
tạm thế này đã, phải đi ăn cơm rồi :v
a) ( x-2 )( x - 4 )( x - 6 )( x -8 ) + 15
= ( x- 2 )( x - 8 )( x - 4)( x- 6 ) + 15
= ( x^2 - 10x + 16 )( x^2 - 10x + 24 ) + 15
Đắt x^2 + x + 16 = y
= y ( y + 8 ) + 15
= y^2 + 8y + 15
= y^2 + 3y + 5y + 15
=y ( y + 3 ) + 5 ( y + 3 )
= ( y+ 5)( y + 3)
Thay vào
`Answer:`
1) \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1\)
\(=[x\left(x+3\right)][\left(x+1\right)\left(x+2\right)]+1\)
\(=\left(x^2+3x\right)\left(x^2+3x+2\right)+1\)
\(=\left(x^2+3x\right)^2+2.\left(x^2+3x\right)+1\)
\(=\left(x^2+3x+1\right)^2\)
2) \(\left(4x+1\right)\left(12x-1\right)\left(3x+2\right)\left(x+1\right)-4\)
\(=[\left(4x+1\right)\left(3x+2\right)][\left(12x-1\right)\left(x+1\right)]-4\)
\(=\left(12x^2+8x+3x+2\right)\left(12x^2+12x-x-1\right)-4\)
\(=[\left(12x^2+11x+0,5\right)+1,5][\left(12x^2+11x+0,5\right)-1,5]-4\)
\(=\left(12x^2+11x+0,5\right)^2-\left(1,5\right)^2-4\)
\(=\left(12x^2+11x+0,5\right)^2-\left(2,5\right)^2\)
\(=\left(12x^2+11x+0,5-2,5\right)\left(12x^2+11x+0,5+2,5\right)\)
\(=\left(12x^2+11x-2\right)\left(12x^2+11x+3\right)\)
3) \(\left(x^2+6x+5\right)\left(x^2+10x+21\right)+15\)
\(=\left(x^2+x+5x+5\right)\left(x^2+3x+7x+21\right)+15\)
\(=\left(x+1\right)\left(x+5\right)\left(x+3\right)\left(x+7\right)+15\)
\(=[\left(x+1\right)\left(x+7\right)][\left(x+5\right)\left(x+3\right)]+15\)
\(=\left(x^2+x+7x+7\right)\left(x^2+3x+5x+15\right)+15\)
\(=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)
Đặt \(v=x^2+=8x+11\)
Đa thức có dạng sau: \(\left(v-4\right)\left(v+4\right)+15\)
\(=v^2-4^2+15\)
\(=v^2-1\)
\(=\left(v+1\right)\left(v-1\right)\)
\(=\left(x^2+8x+11+1\right)\left(x^2+8x+11-1\right)\)
\(=\left(x^2+8x+12\right)\left(x^2+8x+10\right)\)
4) \(\left(x^2-a\right)^2-6x^2+4x+2a\)
\(=\left(x^2-a\right)\left(x^2-a\right)-6x^2+4x+2a\)
\(=\left(x^2-a\right).x^2-a\left(x^2-a\right)-6x^2+4x+2a\)
\(=x^4-ax^2-a.\left(x^2-a\right)-6x^2+4x+2a\)
\(=x^4-ax^2-\left(ax^2-aa\right)-6x^2+4x+2a\)
\(=x^4-2ax^2+a^2-6x^2+2a+4x\)
6) \(a^2-b^2-c^2+2bc-2a+1\)
\(=\left(a^2-2a+1\right)-\left(b^2-2bc+c^2\right)\)
\(=\left(a-1\right)^2-\left(b-c\right)^2\)
\(=\left(a-b+c-1\right)\left(a+b-c-1\right)\)
7) \(4a^2-4b^2+16bc-16c^2\)
\(=4a^2-\left(4b^2-16bc+16c^2\right)\)
\(=\left(2a\right)^2-\left(2b-4c\right)^2\)
\(=\left(2a-2b+4c\right)\left(2a+2b-4c\right)\)
\(=2.\left(a-b-2c\right).2\left(a+b-2c\right)\)
\(=4\left(a-b-2c\right)\left(a+b-2c\right)\)
a) x12 + 4 = x12 + 4x6 + 4 - 4x6 = (x6 + 2)2 - (2x3)2
= (x6 - 2x3 + 2)(x6 + 2x3 + 2)
b) 4x8 + 1 = 4x8 + 4x4 + 1 - 4x4 = (2x4 + 1)2 - (2x2)2
= (2x4 + 2x2 + 1)(2x4 - 2x2 + 1)
c) x7 + x5 - 1 = x7 - x + x5 + x2 - (x2 - x + 1) = x(x6 - 1) + x2(x3 + 1) - (x2 - x + 1)
= x(x3 - 1)(x3 + 1) + x2(x + 1)(x2 - x + 1) - (x2 - x + 1)
= (x4 - x)(x + 1)(x2 - x + 1) + (x3 + x2)(x2 - x + 1) - (x2 - x + 1)
= (x5 + x4 - x2 - x + x3 + x2 - 1)(x2 -x + 1)
= (x5 + x4 + x3 - x - 1)(x2 - x + 1)
d) x7 + x5 + 1 = x7 - x + x5 - x2 + (x2 + x + 1)
= x(x3 - 1)((x3 + 1) + x2(x3 - 1) + (x2 + x + 1)
= (x4 + x)(x - 1)(x2 + x + 1) + x2(x - 1)((x2 + x + 1) + (x2 + x + 1)
= (x2 + x + 1)(x5 - x4 + x2 - x + x3 - x2 + 1)
= (x2 + x + 1)(x5 - x4 + x3 - x + 1)
1
(x2-8)2+36
=x4-16x2+64+36
=x4+20x2+100-36x2
=(x2+10)2-(6x)2
HĐT số 3
a) Đặt A=(x+2)(x+3)(x+4)(x+5)-24
= (x+2)(x+5)(x+3)(x+4)-24
= (x^2+7x+10)(x^2+7x+12)-24
Đặt x^2+7x+11 = a thay vào A ta được :
A=(a-1)(a+1)=a^2-25 = a^2 - 5^2 = (a-5)(a+5) ( 2)
Thế a vào (2) ta được :
A=(x^2+7x+11-5)(x^2+7x+11+5)
= (x^2+7x+6)(x^2+7x+16)
b) = (x2+8x+7)(x2+8x+15)+15
Đặt X=x2+8x+11
f(x) = (X-4)(X+4)+15
= X2-16+15
= X2-12
= (X-1)(X+1)
=> f(x)= (x2+8x+11-1)(x2+8x+11+1)
f(x) = (x2+8x+10)(x2+8x+12)
Đến đây là vẫn còn phân tích được nhưng không dùng phương pháp đặt biến phụ:
f(x) = (x2+8x+10)(x2+8x+12)
= (x2+8x+10)[(x2+2x)+(6x+12)]
= (x2+8x+10)[x(x+2)+6(x+2)]
= (x+2)(x+6)(x2+8x+10)
d) 2x4 - 3x3 - 7x2 + 6x + 8 = (x - 2)(2x3 + x2 - 5x - 4)
Ta lại có 2x3 + x2 - 5x - 4 là đa thức có tổng hệ số của các hạng tử bậc lẻ và bậc chẵn bằng nhau nên có một nhân tử là x+1 nên 2x3 + x2 - 5x - 4 = (x+1)(2x2-x-4)
Vậy 2x4 - 3x3 - 7x2 + 6x + 8 = (x-2)(x+1)(2x2-x-4)
a) \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)
\(=\left[\left(x-1\right)\left(x+2\right)\right].\left[x\left(x+1\right)\right]=24\)
\(=\left(x^2+2x-x-2\right)\left(x^2+x\right)=24\)
\(=\left(x^2+x-2\right)\left(x^2+x\right)=24\)
\(=\left[\left(x^2+x-1\right)-1\right].\left[\left(x^2+x-1\right)+1\right]=24\)
\(=\left(x^2+x-1\right)^2-1=24\)
\(=\left(x^2+x-1\right)^2=25\)
xin lỗi mk chỉ làm được đến đây thôi cậu làm tiếp nhé
Câu 1:
\(=x^4-16x^2+64+36\)
\(=x^4-16x^2+100\)
\(=x^4+20x^2+100-36x^2\)
\(=\left(x^2+10\right)^2-\left(6x\right)^2\)
\(=\left(x^2-6x+10\right)\left(x^2+6x+10\right)\)
Câu 2: \(=x^4+2x^2+1-x^2\)
\(=\left(x^2+1\right)^2-x^2\)
\(=\left(x^2+x+1\right)\left(x^2-x+1\right)\)
\(\left(15^4-1\right)\left(15^4+1\right)-3^8\times5^8=15^8-1-15^8=-1\)