K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 2: 

\(\left(A\cup B\right)\cap C=A\cap C=[1;+\infty)\cap\left(0;4\right)=[1;4)\)

Tập này có 3 phần tử nguyên

Bài 1: 

a: \(\Leftrightarrow x^2-5x+6< =0\)

=>(x-2)(x-3)<=0

=>2<=x<=3

b: \(\Leftrightarrow\left(x-6\right)^2< =0\)

=>x=6

c: \(\Leftrightarrow x^2-2x+1>=0\)

\(\Leftrightarrow\left(x-1\right)^2>=0\)

hay \(x\in R\)

NV
7 tháng 5 2020

1.

\(y\left(0\right)=-4\) ; \(y\left(5\right)=-4\) ; \(y\left(\frac{5}{3}\right)=\frac{392}{27}\)

\(\Rightarrow y_{max}=\frac{392}{27}\) khi \(x=\frac{5}{3}\)

2.

\(2x-1\ge0\Rightarrow x\ge\frac{1}{2}\)

\(3x+m\le0\Rightarrow x\le-\frac{m}{3}\)

Hệ có nghiệm khi \(-\frac{m}{3}\ge\frac{1}{2}\Rightarrow m\le-\frac{3}{2}\)

3.

\(P=a+b+\frac{1}{a}+\frac{1}{b}\ge a+b+\frac{4}{a+b}=a+b+\frac{1}{a+b}+\frac{3}{a+b}\)

\(P\ge2\sqrt{\frac{a+b}{a+b}}+\frac{3}{1}=5\)

\(P_{min}=5\) khi \(a=b=\frac{1}{2}\)

4.

\(y=2x+\frac{3}{x}\ge2\sqrt{\frac{6x}{x}}=2\sqrt{6}\)

Dấu "=" xảy ra khi \(2x=\frac{3}{x}\Leftrightarrow x=\sqrt{\frac{3}{2}}=\frac{\sqrt{6}}{2}\)

17 tháng 5 2020

cảm ơn bạn nha haha

Bài 3.Cho biểu thức: A = (-a + b –c) –(-a –b –c)a) Rút gọn A                  b) Tính giá trị của A khi a = 1; b = –1; c = –2Bài 4.Cho biểu thức: A = (–m + n –p) –(–m –n –p)a) Rút gọn A                                          b) Tính giá trị của A khi m = 1; n= –1; p = –2Bài 5.Cho biểu thức: A = (–2a + 3b –4c) –(–2a –3b –4c)a) Rút gọn A                                        b) Tính giá trị của A khi a = 2012; b = –1; c...
Đọc tiếp

Bài 3.Cho biểu thức: A = (-a + b –c) –(-a –b –c)

a) Rút gọn A                  b) Tính giá trị của A khi a = 1; b = –1; c = –2

Bài 4.Cho biểu thức: A = (–m + n –p) –(–m –n –p)

a) Rút gọn A                                          b) Tính giá trị của A khi m = 1; n= –1; p = –2

Bài 5.Cho biểu thức: A = (–2a + 3b –4c) –(–2a –3b –4c)

a) Rút gọn A                                        b) Tính giá trị của A khi a = 2012; b = –1; c = –2013

bài 6 Bỏ dấu ngoặc rồi thu gọn biểu thức: 

a) A = (a + b) –(a –b) + (a –c) –(a + c)             b) B = (a + b –c) + (a–b + c) –(b + c –a) –(a –b –c)

bài 7 Liệt kê và tính tổng tất cả các số nguyên x thỏa măn:

a)–77bé hơn hoặc bằng x <7                            b)–96<x bè hơn hoặc bằng 6

Bài 8.Tính tổng tất cả các số nguyên x thỏa mãn : |x| < 2013

2
3 tháng 5 2016

nhiều thế ai làm đc  bucminh

3 tháng 5 2016

thif lm từng câu 1

Trắc nghiệm (4 điểm) Câu 1: Bất phương trình 2x  3  2x  6  3x 1 xác định khi nào? x1 x1  x  1 A. x1  x   1 B. x1  x  1 C. x1  x   1 D. x1  3   3 Câu 2: Tập nghiệm của bất phương trình 2x 13x  2  0 là A. B.  3 D. 2;  3 A.;21; B. 2;1 C. 1;2 ...
Đọc tiếp

Trắc nghiệm (4 điểm)
Câu 1: Bất phương trình 2x  3  2x  6  3x 1 xác định khi nào?
x1 x1
 x  1 A. x1
 x   1 B. x1
 x  1 C. x1
 x   1 D. x1
 3 
 3
Câu 2: Tập nghiệm của bất phương trình 2x 13x  2  0 là
A. B.
 3 D. 2;
 3 A.;21; B. 2;1 C. 1;2
323223 3 Câu 3: Nhị thức f x   2x  5 có bảng xét dấu như thế nào?
C.
Câu 4: Tập nghiệm của bất phương trình x 1  1 là
D.
x3
A. B.3; C. ;5 D. 
Câu5:Bấtphươngtrình 2xm2 10 cótậpnghiệmtrongkhoảng ;4 khi và chỉ khi:
A. m3 B. 3m3 C. m3 Câu 6: Điều kiện để tam thức bâc hai f x  ax2  bx  c
A. a0 B. a0 C. a0   0   0   0
D. m 3
a  0 lớn hơn 0 với mọi x là:
D. a0   0
Câu7:Bấtphươngtrình 2x2 5x30 cótậpnghiệmlà
D. ;31;   
A. 1;3 B. ;31; C.;13; 2 2   2
2 
Câu 8: Tập nghiệm của bất phương trình A. (;2](1;1)[2;)
C. (;2][2;)
Câu 9: Tập nghiệm của bất phương trình
3  1 là x2 1
B. [2;1)(1;2) D. (-1; 1)
2xx2 1
3  2x  x2  0 là
1
Mã đề 101
A. (3;1][0;1)(1;) B. (3;1][0;) C.(-;-3)[-1;0](1;+ ) D.(-3;-1)(1;+ )
Câu 10: Tổng của các nghiệm nguyên của hệ bất phương trình x  5  0 là: x50
A. 0 B. 5 C. 15 D. Không xác định được II. Tự luận (6 điểm)
Câu 1: Giải các bất phương trình sau
a) (3x2 – 10x + 3)(4x – 5) > 0
b) 3x47  4x47 3x 1 2x 1
2x3 x1
d) x27x632x
Câu 2. Tìm giá trị của m để các bất phương trình sau vô nghiệm.
(m–3)x2 +(m+2)x–4>0

1
21 tháng 4 2020

?

12 tháng 11 2021

Để PT có 2 nghiệm \(\Leftrightarrow\Delta=\left[2\left(m+2\right)\right]^2-4\left(m^2+4\right)\ge0\)

\(\Leftrightarrow4m^2+16m+16-4m^2-16\ge0\\ \Leftrightarrow m\ge0\)

Áp dụng Viét: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+2\right)\\x_1x_2=m^2+4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=2\left(m+2\right)\left(1\right)\\x_1x_2=m^2+4\left(2\right)\\x_1+2x_2=7\left(3\right)\end{matrix}\right.\)

\(\left(3\right)-\left(1\right)=x_2=3-2m\)

Thay vào \(\left(1\right)\Leftrightarrow x_1=2\left(m+2\right)-x_2=2m+4-3+2m=4m+1\)

Thay vào \(\left(2\right)\Leftrightarrow\left(3-2m\right)\left(4m+1\right)=m^2+4\)

\(\Leftrightarrow10m+3-8m^2=m^2+4\\ \Leftrightarrow9m^2-10m+1=0\\ \Leftrightarrow\left[{}\begin{matrix}m=1\\m=\dfrac{1}{9}\end{matrix}\right.\left(tm\right)\)