K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2017

10 tháng 8 2018

Đáp án  A

Chọn hệ trục tọa độ Oxy như hình vẽ với O là gốc tọa độ. Phương trình đường tròn tâm O, đường kính AB = 8 là x 2 + y 2 = 16 ⇔ y 2 = 16 - x 2 ⇔ x = ± 16 - x 2 . 

Diện tích hình phẳng cần tính gấp 2 lần diện tích hình phẳng (H) giới hạn bởi đồ thị hàm số y = 16 - x 2 , y = 0 , x = - 2 , x = 2 . 

Khi đó  S = 2 . S H = 2 . ∫ - 2 2 16 - x 2 d x ⇒ S = S = 16 3 π + 8 3 .

1 tháng 4 2016

Xét đường thẳng ∆ đi qua điểm O và vuông gó với mặt phẳng (P). Gọi l là đưởng thẳng đi qua M0 ε (C) và l vuông góc với (P). Do đó l // ∆. Quay mặt phẳng (Q) tạo bởi l và ∆ quanh đường thẳng ∆, thì đường thẳng l vạch lên một mặt trụ tròn xoay. Mặt trụ này chứa tất cả những đường thẳng đi qua các điểm M ε (C) và vuông góc với (P). Trục của mặt trụ là ∆ và bán kính của trụ bằng r.

 
15 tháng 12 2018

a) Xét tam giác ACB, có CO là trung tuyến. Lại có \(CO=OA=OB=\frac{AB}{2}\), vậy nên tam giác ACB vuông lại C.

b) Xét tam giác vuông ACB, ta có:

\(\sin\widehat{CAB}=\frac{BC}{BA}=\frac{1}{2}\Rightarrow\widehat{CAB}=30^o\)

Xét tam giác vuông ACB, ta có:

\(cos\widehat{CAB}=\frac{AC}{AB}=\frac{\sqrt{3}}{2}\Rightarrow AC=R\sqrt{3}\)

Xét tam giác vuông ABD, ta có:

\(\tan\widehat{DAB}=\frac{BD}{AB}=\frac{\sqrt{3}}{3}\Rightarrow BD=\frac{2\sqrt{3}R}{3}\)

c) Ta thấy ngay tam giác BCD vuông tại C nên tâm đường tròn ngoại tiếp tam giác BCD là trung điểm cạnh huyền.

Vậy O' là trung điểm BD.

Xét tam giác OCO' và OBO' có:

O'C = O'B (gt)

OC = OB (= R)

OO' chung

\(\Rightarrow\Delta OCO'=\Delta OBO'\left(c-c-c\right)\)

\(\Rightarrow\widehat{O'CO}=\widehat{OBO'}=90^o\)

Vậy nên O'C là tiếp tuyến của đường tròn (O).

Lại có AB vuông góc với O'B tại B nên AB là tiếp tuyến tại B của đường tròn (O').

d) Gọi H là hình chiếu của I trên OB.

\(AD=\sqrt{AB^2+BD^2}=\frac{4R\sqrt{3}}{3}\)

Ta có hai công thức tính diện tích tam giác:

Công thức Hê-rông: \(S=\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}\) với a, b, c là độ dài các cạnh của tam giác, p là nửa chu vi

\(S=pr\) với r bán kính đường tròn nội tiếp.

Vậy nên \(r=\sqrt{\frac{\left(p-AB\right)\left(p-BD\right)\left(p-AD\right)}{p}}\)

\(p=\frac{AD+DB+BA}{2}=\left(1+\sqrt{3}\right)R\)

Vậy thì:

\(r=R\sqrt{\frac{4-2\sqrt{3}}{3}}=\frac{3-\sqrt{3}}{3}R\)

Thấy ngay IH = r.

Xét tam giác HIB có góc H vuông, \(\widehat{IBH}=45^o\)  (Do BI là phân giác góc vuông)

Vậy nên \(IH=HB=\frac{3-\sqrt{3}}{3}R\)

\(\Rightarrow OH=R-HB=\frac{R\sqrt{3}}{3}\)

Xét tam giác vuông OIH, ta có: 

\(OI=\sqrt{OH^2+IH^2}=R\sqrt{\frac{5-2\sqrt{3}}{3}}\)

14 tháng 2 2019

a) Xét tam giác ACB, có CO là trung tuyến. Lại có \(CO=OA=OB=\frac{AB}{2}\), vậy nên tam giác ACB vuông lại C.

b) Xét tam giác vuông ACB, ta có:

\(\sin\widehat{CAB}=\frac{BC}{BA}=\frac{1}{2}\Rightarrow\widehat{CAB}=30^o\)

Xét tam giác vuông ACB, ta có:

\(cos\widehat{CAB}=\frac{AC}{AB}=\frac{\sqrt{3}}{2}\Rightarrow AC=R\sqrt{3}\)

Xét tam giác vuông ABD, ta có:

\(\tan\widehat{DAB}=\frac{BD}{AB}=\frac{\sqrt{3}}{3}\Rightarrow BD=\frac{2\sqrt{3}R}{3}\)

c) Ta thấy ngay tam giác BCD vuông tại C nên tâm đường tròn ngoại tiếp tam giác BCD là trung điểm cạnh huyền.

Vậy O' là trung điểm BD.

Xét tam giác OCO' và OBO' có:

O'C = O'B (gt)

OC = OB (= R)

OO' chung

\(\Rightarrow\Delta OCO'=\Delta OBO'\left(c-c-c\right)\)

\(\Rightarrow\widehat{O'CO}=\widehat{OBO'}=90^o\)

Vậy nên O'C là tiếp tuyến của đường tròn (O).

Lại có AB vuông góc với O'B tại B nên AB là tiếp tuyến tại B của đường tròn (O').

d) Gọi H là hình chiếu của I trên OB.

\(AD=\sqrt{AB^2+BD^2}=\frac{4R\sqrt{3}}{3}\)

Ta có hai công thức tính diện tích tam giác:

Công thức Hê-rông: \(S=\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}\) với a, b, c là độ dài các cạnh của tam giác, p là nửa chu vi

\(S=pr\) với r bán kính đường tròn nội tiếp.

Vậy nên \(r=\sqrt{\frac{\left(p-AB\right)\left(p-BD\right)\left(p-AD\right)}{p}}\)

\(p=\frac{AD+DB+BA}{2}=\left(1+\sqrt{3}\right)R\)

Vậy thì:

\(r=R\sqrt{\frac{4-2\sqrt{3}}{3}}=\frac{3-\sqrt{3}}{3}R\)

Thấy ngay IH = r.

Xét tam giác HIB có góc H vuông, \(\widehat{IBH}=45^o\)  (Do BI là phân giác góc vuông)

Vậy nên \(IH=HB=\frac{3-\sqrt{3}}{3}R\)

\(\Rightarrow OH=R-HB=\frac{R\sqrt{3}}{3}\)

Xét tam giác vuông OIH, ta có: 

\(OI=\sqrt{OH^2+IH^2}=R\sqrt{\frac{5-2\sqrt{3}}{3}}\)