K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2022

\(a.\) Xét \(\Delta ABC\) và \(\Delta HBA:\)

\(\widehat{B}chung.\)

\(\widehat{BAC}=\widehat{BHA}\left(=90^o\right).\)

\(\Rightarrow\Delta ABC\sim\Delta HBA\left(g-g\right).\)

\(b.\) Xét \(\Delta ABC\) vuông tại A:

\(BC^2=AB^2+AC^2\left(Pytago\right).\\ \Rightarrow BC^2=30^2+40^2=2500.\\ \Rightarrow BC=50\left(cm\right).\)

Xét \(\Delta ABC\) vuông tại A, đường cao AH:

\(AH.BC=AB.AC\) (Hệ thức lượng).

\(\Rightarrow AH.50=30.40.\\ \Rightarrow AH=24\left(cm\right).\)

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Xét ΔABC vuông tại A có BD là đường phân giác ứng với cạnh AC(gt)

nên \(\dfrac{DA}{AB}=\dfrac{DC}{BC}\)(Tính chất đường phân giác của tam giác)

hay \(\dfrac{DA}{6}=\dfrac{DC}{10}\)

mà DA+DC=AC(D nằm giữa A và C)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{DA}{6}=\dfrac{DC}{10}=\dfrac{DA+DC}{6+10}=\dfrac{AC}{16}=\dfrac{8}{16}=\dfrac{1}{2}\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{DA}{6}=\dfrac{1}{2}\\\dfrac{DC}{10}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}DA=3\left(cm\right)\\DC=5\left(cm\right)\end{matrix}\right.\)

Vậy: DA=3cm; DC=5cm

a: \(AC=\sqrt{10^2-6^2}=8\left(cm\right)\)

S ABC=1/2*6*8=3*8=24cm2

Xet ΔABC có BD là phân giác

nên AD/AB=CD/BC

=>AD/3=CD/5=8/8=1

=>AD=3cm; CD=5cm

 

b: Xét ΔABC vuông tại A và ΔHCA vuông tại H co

góc C chung

=>ΔABC đồng dạngvới ΔhAC

c: IH/IA=BH/BA

AD/DC=BA/BC

mà BH/BA=BA/BC

nên IH/IA=AD/DC

d:

góc AID=góc BIH=góc ADB=góc ADI

=>ΔADI can tại A

24 tháng 4 2022

ai giúp mình với ạ:( ko phải làm câu a đâu ạ

 

 

a: BC=10cm

Xét ΔBAC có BD là phân giác

nên AD/AB=CD/BC

=>AD/3=CD/5

Áp dụng tính chất của dãy tỉ sốbằng nhau, ta được:

AD/3=CD/5=(AD+CD)/(3+5)=8/8=1

=>AD=3cm; CD=5cm

b: Xét ΔBAD vuông tại A và ΔBHI vuông tại H có

góc ABD=góc HBI

Do đó:ΔBAD đồng dạng với ΔBHI

Suy ra: BA/BH=BD/BI

hay \(BA\cdot BI=BH\cdot BD\)

c: góc AID=góc BIH=90 độ-góc DBC

góc ADI=90 độ-góc ABD

mà góc DBC=góc ABD

nên góc AID=góc ADI

hay ΔAID cân tại A

3 tháng 5 2016

ai đó làm ơn giải hộ mình bài này với

3 tháng 5 2016

a) Áp dụng định lý PYTAGO vào tam giác ABC có

   BC^2=AB^2+AC^2

           = 9^2+12^2=225

BC= 15

Sabc= 1/2.AB.AC = 54 mà Sabc = 1/2.AH.BC 

                                         => 1/2.AH = Sabc: BC = 3.6=> AH =7,2

a: BC=10cm

Xét ΔABC có BD là phân giác

nên DA/AB=DC/BC

=>DA/6=DC/10

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{DA}{6}=\dfrac{DC}{10}=\dfrac{DA+DC}{6+10}=\dfrac{8}{16}=\dfrac{1}{2}\)

Do đó:DA=3cm; DC=5cm

b: Xét ΔBHA có BI là phân giác

nên IH/IA=BH/BA(1)

Xét ΔABC có BD là phân giác

nên AD/DC=BA/BC(2)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AB^2=BH\cdot BC\)

hay BA/BC=BH/BA(3)

Từ (1), (2) và (3) suy ra IH/IA=AD/DC

26 tháng 2 2022

-Tham khảo:

https://hoc24.vn/cau-hoi/.4916932418792

12 tháng 5 2022

(Tự vẽ hình)

a) Áp dụng định lý Pytago ta có: 

\(BC^2=AB^2+AC^2=9^2+12^2=225\Rightarrow BC=15\left(cm\right)\)

Xét \(\Delta AHB\) và \(\Delta CAB\) có:

\(\widehat{AHB}=\widehat{CAB}=90^0\);

\(\widehat{B}\) chung

\(\Rightarrow\Delta AHB\sim\Delta CAB\) (g.g)

b) Do \(\Delta AHB\sim\Delta CAB\Rightarrow\dfrac{AH}{AB}=\dfrac{AC}{BC}\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{9.12}{15}=7,2\left(cm\right)\)

c) Xét \(\Delta BAD\) và \(\Delta BHK\) có:

\(\widehat{BAD}=\widehat{BHK}=90^0\)

\(\widehat{ABD}=\widehat{HBK}\) (tính chất phân giác)

\(\Rightarrow\Delta BAD\sim\Delta BHK\left(g.g\right)\Rightarrow\dfrac{BA}{BD}=\dfrac{BH}{BK}\Rightarrow BA.BK=BH.BD\)