K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Vì \(\left(d\right)\) đi qua \(A\left(1;2\right);B\left(-3;4\right)\) nên ta có hệ phương trình:

\(\left\{{}\begin{matrix}k+k'-3=2\\-3\left(k-3\right)+k'=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}k+k'=5\\-3k+k'=-5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4k=10\\k+k'=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}k=\dfrac{2}{5}\\k'=\dfrac{23}{5}\end{matrix}\right.\)

6 tháng 12 2015

a. Xét A(1:6)

Đăt:+xA=1

+xB=6. 

Thay xB, yB vào đồ thì hàm số y=mx+3

Ta có: 6=m*1+2

=>m=6-2

=>m=4

Mấy câu kia làm tương tự nhé!!!! :D

4 tháng 12 2015

khó nhỉ , đại khó luôn đó

23 tháng 12 2018

a) (d) đi qua điểm (1;2)

<=> 2 = k + 1 + k

<=> 1 = 2k

<=> k = 0,5

Vậy k = 0,5 thì (d) đi qua (1;2)

b) Để (d) // đgth y = 2x + 3

\(\Leftrightarrow\hept{\begin{cases}k+1=2\\k\ne3\end{cases}\Leftrightarrow\hept{\begin{cases}k=1\\k\ne3\end{cases}\Rightarrow}k=1}\)

Vậy k =1 thì (d) // đgth y = 2x +3

c) Gọi điểm cố định là (d) đi qua là (x0;y0)

Ta có y0 = ( k +1) x0 + k

<=> y0 = kx0 + x0+k

<=> y0 - x0 - k ( x0 + 1) = 0 \(\forall\)k

Để pt nghiệm đúng với mọi k <=> \(\hept{\begin{cases}x_0+1=0\\y_0-x_0=0\end{cases}\Leftrightarrow\hept{\begin{cases}x_0=-1\\y_0=-1\end{cases}}}\)

Điểm cố định (d) luôn đi qua là ( -1;-1)

a: Vì đồ thị hàm số y=ax+b song song với đường thẳng y=2x-3 nên a=2

Vậy: (d): y=2x+b

Thay x=1 và y=1 vào (d), ta được:

b+2=1

hay b=-1

b: Vì đồ thị hàm số y=ax+b vuông góc với y=3x+1 

nên 3a=-1

hay \(a=-\dfrac{1}{3}\)

Vậy: \(\left(d\right):y=-\dfrac{1}{3}x+b\)

Thay x=1 và y=2 vào (d), ta được:

\(-\dfrac{1}{3}\cdot1+b=2\)

\(\Leftrightarrow b=\dfrac{7}{3}\)

c: Vì đồ thị hàm số y=ax+b đi qua hai điểm P(2;1) và Q(-1;4) nên ta có hệ phương trình:

\(\left\{{}\begin{matrix}2a+b=1\\-a+b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a=-3\\-a+b=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=-1\\b=4+a=3\end{matrix}\right.\)

22 tháng 10 2019

.