Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A\left(x\right)=5x^5-4x^4-2x^3+4x^2+3x+6\)
\(B\left(x\right)=-x^5+2x^4-2x^3+3x^2-x+4\)
b: \(A\left(x\right)+B\left(x\right)=4x^5-2x^4-4x^3+7x^2+2x+10\)
\(A\left(x\right)-B\left(x\right)=6x^5-6x^4+x^2+4x+2\)
a/ xét tam giác ABD vuông tại A và tam giác HBD vuông tại H, ta có:
BD là cạnh chung
góc B là góc chung ( gt )
do đó : tam giác ABD = tam giác HBD ( ch - gn )
=> AD = HD
a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
góc ABD=góc HBD
=>ΔBAD=ΔBHD
=>AD=HD
b: Xét ΔBHK vuông tại H và ΔBAC vuông tại A có
BH=BA
góc HBK chung
=>ΔBHK=ΔBAC
=>BK=BC
=>ΔBKC cân tại B
mà BD là phân giác
nên BD vuông góc KC
a) Sắp xếp theo lũy thừa giảm dần
P(x)=x^5−3x^2+7x^4−9x^3+x^2−1/4x
=x^5+7x^4−9x^3−3x^2+x^2−1/4x
=x^5+7x^4−9x^3−2x^2−1/4x
Q(x)=5x^4−x^5+x^2−2x^3+3x^2−1/4
=−x^5+5x^4−2x^3+x^2+3x^2−1/4
=−x^5+5x^4−2x^3+4x^2−1/4
b)
P(x)+Q(x)
=(x^5+7x^4−9x^3−2x^2−1/4^x)+(−x^5+5x^4−2x^3+4x^2−1/4)
=x^5+7x^4−9x^3−2x^2−1/4x−x^5+5x^4−2x^3+4x^2−1/4
=(x^5−x^5)+(7x^4+5x^4)+(−9x^3−2x^3)+(−2x^2+4x^2)−1/4x−1/4
=12x^4−11x^3+2x^2−1/4x−1/4
P(x)−Q(x)
=(x^5+7x^4−9x^3−2x^2−1/4x)−(−x^5+5x^4−2x^3+4x^2−1/4)
=x^5+7x^4−9x^3−2x^2−1/4x+x^5−5x^4+2x^3−4x^2+1/4
=(x^5+x^5)+(7x^4−5x^4)+(−9x^3+2x^3)+(−2x^2−4x^2)−1/4x+1/4
=2x5+2x4−7x3−6x2−1/4x−1/4
c) Ta có
P(0)=0^5+7.0^4−9.0^3−2.0^2−1/4.0
⇒x=0là nghiệm của P(x).
Q(0)=−0^5+5.0^4−2.0^3+4.0^2−1/4=−1/4≠0
⇒x=0không phải là nghiệm của Q(x).
Cho 2 đa thức: f(x)= 9 - x5 + 4x - 2x3 + x2 - 7x4
g(x)= x5 - 9 + 2x2 + 7x4 + 2x3 - 3x
a) Sắp sếp các đa thức trên theo luỹ thừa giảm dần của biến
f(x)= 9 - x5 + 4x - 2x3 + x2 - 7x4
f(x) = -x5 - 7x4 - 2x3 + x2 + 4x + 9
g(x)= x5 - 9 + 2x2 + 7x4 + 2x3 - 3x
g(x) = x5 + 7x4 + 2x3 + 2x2 - 3x - 9
b) Tìm bậc, hệ số cao nhất, hệ số tự do của đa thức f(x); g(x)
f(x) = -x5 - 7x4 - 2x3 + x2 + 4x + 9
+ Bậc : 5 _ hệ số cao nhất : -1 _ hệ số tự do : 9
g(x) = x5 + 7x4 + 2x3 + 2x2 - 3x - 9
+ Bậc : 5_ hệ số cao nhất : 1 _ hệ số tự do : -9
c) Tính f(x) + g(x); f(x) - g(x)
f( x) + g(x) = ( -x5 - 7x4 - 2x3 + x2 + 4x + 9 ) +( x5 + 7x4 + 2x3 + 2x2 - 3x - 9 )
= -x5 - 7x4 - 2x3 + x2 + 4x + 9 + x5 + 7x4 + 2x3 + 2x2 - 3x - 9
= ( -x5 + x5 ) + ( -7x4 + 7x4 ) + ( -2x3 + 2x3 ) + ( x2 + 2x2 ) + ( 4x -3x ) + ( 9 - 9 )
= 3x2 + x
f( x) - g(x) = ( -x5 - 7x4 - 2x3 + x2 + 4x + 9 ) - ( x5 + 7x4 + 2x3 + 2x2 - 3x - 9 )
= -x5 - 7x4 - 2x3 + x2 + 4x + 9 - x5 - 7x4 - 2x3 - 2x2 + 3x + 9
= ( -x5 - x5 ) + ( -7x4 - 7x4 ) + ( -2x3 - 2x3 ) + ( x2 - 2x2 ) + ( 4x + 3x ) + ( 9 + 9 )
= -2x5 - 14x4 - 2x3 -x2 + 7x + 18
a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
DO đó: ΔBAD=ΔBHD
Suy ra: DA=DH
b: Xét ΔADK vuông tại A và ΔHDC vuông tại H có
DA=DH
\(\widehat{ADK}=\widehat{HDC}\)
Do đó:ΔADK=ΔHDC
Suy ra: AK=HC
Ta có: BA+AK=BK
BH+HC=BC
mà BA=BH
và AK=HC
nên BK=BC
=>ΔBKC cân tại B
mà BD là đường phân giác
nên BD là đường cao
Bài 3:
a/ Dấu hiệu ở đây là thời gian làm bài ( tính theo phút ) của mỗi học sinh ( ai cũng làm được )
Có 30 giá trị. Có 6 giá trị khác nhau.
b/
Giá trị (x) 5 7 8 9 10 14
Tần số (n) 4 3 8 8 4 3 N= 30
c) Tính Trung bình cộng:
_
X = 4.5+7.3+8.8+9.8+10.4+14.3 / 30= 259:30 = 8,6 phút
Làm đại thôi, chán hình rồi )): nghề của con.
Câu 1 :
\(A\left(x\right)=3x^3+2x+3x^2-6\)
\(B\left(x\right)=2x^2-3x^3-7x+6\)
a, Sắp xếp : \(A\left(x\right)=3x^3+3x^2+2x-6\)
\(B\left(x\right)=-3x^3+2x^2-7x+6\)
b, Ta có : \(A\left(x\right)+B\left(x\right)=\left(3x^3+3x^2+2x-6\right)+\left(-3x^3+2x^2-7x+6\right)\)
\(=3x^3+3x^2+2x-6-3x^3+2x^2-7x+6\)
\(=5x^2-5x\)
\(A\left(x\right)-B\left(x\right)=\left(3x^3+3x^2+2x-6\right)-\left(-3x^3+2x^2-7x+6\right)\)
\(=3x^3+3x^2+2x-6+3x^3-2x^2+7x-6\)
\(=6x^3+x^2+9x-12\)
c, Đặt \(5x^2-5x=0\)
\(\Leftrightarrow x\left(5x-5\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
Vậy rút ra đc ...tự lm bn nhé!...
Câu 2 :
a, \(4x+9=0\Leftrightarrow x=-\frac{9}{4}\)
Vậy nghiệm đa thức trên la -9/4
b, \(3x^2+4x=0\Leftrightarrow x\left(3x+4\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{4}{3}\end{cases}}\)
Vậy nghiệm đa thức là 0;-4/3
a) \(A\left(x\right)=5x^5-4x^4-2x^3+4x^2+3x+6\)
\(B\left(x\right)=-x^5+2x^4-2x^3+3x^2-x+4\)
b) \(A\left(x\right)+B\left(x\right)=5x^5-4x^4-2x^3+4x^2+3x+6+\left(-x^5+2x^4-2x^3+3x^2-x+4\right)\)
\(A\left(x\right)+B\left(x\right)=5x^5-4x^4-2x^3+4x^2+3x+6-x^5+2x^4-2x^3+3x^2-x+4\)
\(A\left(x\right)+B\left(x\right)=4x^5-2x^4-4x^3+7x^2+2x+10\)
Lại có: \(A\left(x\right)-B\left(x\right)=5x^5-4x^4-2x^3+4x^2+3x+6-\left(-x^5+2x^4-2x^3+3x^2-x+4\right)\)
\(A\left(x\right)-B\left(x\right)=5x^5-4x^4-2x^3+4x^2+3x+6+x^5-2x^4+2x^3-3x^2+x-4\)
\(A\left(x\right)-B\left(x\right)=6x^5-6x^4+x^2+4x+2\)
c) Giả sử \(A\left(x\right)=5x^5-4x^4-2x^3+4x^2+3x+6=0\)
\(\Rightarrow A\left(x\right)=5x^5+5x^4-9x^4-9x^3+7x^3+7x^2-3x^2-3x+6x+6=0\)
\(\Rightarrow A\left(x\right)=5x^4\left(x+1\right)-9x^3\left(x+1\right)+7x^2\left(x+1\right)-3x\left(x+1\right)+6\left(x+1\right)=0\)
\(\Rightarrow A\left(x\right)=\left(x+1\right)\left(5x^4-9x^3+7x^2-3x+6\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+1=0\\5x^4-9x^3+7x^2-3x+6=0\end{cases}}\Rightarrow x=-1\)
Vậy x = -1 là một nghiệm của A(x)
Thay x = -1 vào B(x), nếu kết quả khác 0 thì đó không phải là nghiệm của B(x)