Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(B=\frac{3x^2+6x+10}{x^2+2x+5}\)
\(\Leftrightarrow B=3-\frac{5}{x^2+2x+5}\)
\(\Leftrightarrow B=3-\frac{5}{5\left(\frac{x^2}{5}+\frac{2x}{5}+\frac{5}{5}\right)}\Leftrightarrow B=3-\frac{1}{\frac{\left(x^2+2x+1\right)}{5}+\frac{4}{5}}\)( cho \(\left(x+1\right)^2=0\))
\(\Leftrightarrow maxB=3-\frac{1}{\frac{4}{5}}=\frac{7}{4}\) KHI X= -1
c) \(D=x^2-2x+y^2+4y+7\)
\(\Leftrightarrow D=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+2\)
\(\Leftrightarrow D=\left(x-1\right)^2+\left(y+2\right)^2+2\)
\(\Leftrightarrow minD=2\)KHI X= 1 và Y= -2
e) Câu này đề có vẻ sai bạn kiểm tra lại giúp mk ! mk làm theo đề đúng nka !
\(E=\frac{x^2-4x+1}{x^2}\)
\(\Leftrightarrow E=\frac{x^2\left(1-\frac{4}{x}+\frac{1}{x^2}\right)}{x^2}=1-\frac{4}{x}+\frac{1}{x^2}\)
ĐẶT \(y=\frac{1}{x}\)\(\Leftrightarrow minE=-3\)KHI X = 1/2
Hai câu còn lại tối mk giải tiếp mk bận đi học rùi bạn thông cảm
1) A = 3 - 4x2 - 4x = - (4x2 + 4x +1) + 4 = - (2x+1)2 + 4
Vì - (2x+1)2 \(\le\)0 nên A = - (2x+1)2 + 4 \(\le\) 4 vậy maxA = 4 khi 2x+1 = 0 => x = -1/2
b) ta có x2 + 6x + 11 = x2 + 2.3x + 9 + 2 = (x+3)2 + 2 \(\ge\) 0 + 4 = 4
=> \(B=\frac{1}{x^2+6x+11}\le\frac{1}{4}\) vậy maxB = 1/4 khi x = -3
2) a) 3x2 - 3x + 1 = 3.(x2 - x) + 1 = 3.(x2 - 2.x\(\frac{1}{2}\) + \(\frac{1}{4}\)) + \(\frac{1}{4}\) = 3.(x - \(\frac{1}{2}\) )2 + \(\frac{1}{4}\) \(\ge\)0 + \(\frac{1}{4}\)= \(\frac{1}{4}\)
vậy min(3x2 - 3x + 1) = 1/4 khi x = 1/2
b) Áp dụng bất đẳng thức giá trị tuyệt đối: |a| + |b| \(\ge\) |a - b|. dấu = khi a.b < 0
ta có: |3x - 3| + |3x - 5| \(\ge\) |3x - 3 - (3x - 5)| = |2| = 2
vậy min = 2 khi (3x - 3)(3x - 5) < 0 hay 1< x < 5/3
GTNN :
\(K=\frac{3-4x}{x^2+1}=\frac{-x^2-1+x^2-4x+4}{x^2+1}=\frac{\left(x^2+1\right)+\left(x-2\right)^2}{x^2+1}=1+\frac{\left(x-2\right)^2}{x^2+1}\ge1\)
K đạt MIN là 1 khi x = - 2
GTLN :
\(K=\frac{3-4x}{x^2+1}=\frac{\left(4x^2+4\right)-\left(4x^2+4x+1\right)}{x^2+1}=\frac{4\left(x^2+1\right)-\left(2x+1\right)^2}{x^2+1}=4-\frac{\left(2x+1\right)^2}{x^2+1}\le4\)
Đạt GTLN là 4 tại x = - 1/2
A = (4x + 3)/(x² + 1)
CM bất đẳng thức phụ : (a² + b²)(c² + d²) ≥ (ac + bd)² (1)
Đây là bất đẳng thức bunhiacopxki , nếu em chưa biết thì anh CM luôn :
(1) <=> a²c² + a²d² + b²c² + b²d² ≥ a²c² + 2abcd + b²d²
<=> a²d² - 2.ad.bc + b²c² ≥ 0
<=> (ad - bc)² ≥ 0 --> luôn đúng --> bđt (1) được CM
- Dấu " = " xảy ra <=> ad = bc <=> a/c = b/d
- Áp dụng bđt (1) ta có : (4.x + 3.1)² ≤ (4² + 3²)(x² + 1²)
<=> (4x + 3)² ≤ 25(x² + 1)
<=> -5.√(x² + 1) ≤ 4x + 3 ≤ 5.√(x² + 1)
<=> -5/√(x² + 1) ≤ A = (4x + 3)/(x² + 1) ≤ 5/√(x² + 1)
Câu 2 : Bạn cần thêm điều kiện a,b là các số không âm
Áp dụng bất đẳng thức Cosi, ta có : \(12=3a+5b\ge2.\sqrt{3a.5b}=2\sqrt{15ab}\Rightarrow ab\le\frac{6^2}{15}=\frac{12}{5}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}3a+5b=12\\3a=5b\\a,b\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=2\\b=\frac{6}{5}\end{cases}}\)
Vậy Max B = \(\frac{12}{5}\Leftrightarrow\hept{\begin{cases}a=2\\b=\frac{6}{5}\end{cases}}\)