K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2018

Câu 1:

Ta có phương trình: \(x^2-4x+6=\frac{21}{x^2-4x+10}\)

<=> \(\left(x^2-4x+6\right)\left(x^2-4x+10\right)=21\)

<=> \(\left(x^2-4x+8\right)^2-4=21\)

<=> \(\left(x^2-4x+8\right)^2=25\)

<=> \(x^2-4x+8=\pm5\)

<=> \(\orbr{\begin{cases}x^2-4x+3=0\\x^2-4x+13=0\end{cases}}\)

2 phương trình này bạn bấm máy tính là ra nghiệm nha :) Mình làm hơi tắt :0

Câu 3:

Ta sẽ sử dụng bất đẳng thức Bu-nhi-a-cốp-xki dạng phân thức: Với a, b, x, y thuộc R thì \(\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}\)

Dấu "=" xảy ra <=> \(\frac{a}{x}=\frac{b}{y}\)

Áp dụng bất đẳng thức Bu-nhi-a-cốp-xki dạng phân thức ta có:

\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{b+c+c+a+a+b}=\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\)

=> \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{a+b+c}{2}\)=> đpcm

Câu 4:

Do x > 0 nên ta có: \(x+\frac{1}{x}-2=\left(\sqrt{x}\right)^2-2+\left(\frac{1}{\sqrt{x}}\right)^2=\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^2\ge0\forall x>0\)

=> \(x+\frac{1}{x}-2\ge0\Rightarrow x+\frac{1}{x}\ge2\)

=> đpcm

4 tháng 4 2018

  cảm ơn bạn rất nhiều

23 tháng 4 2021

Bài 1 : 

a, \(\left(a-2\right)^2-b^2=\left(a-2-b\right)\left(a-2+b\right)\)

b, \(2a^3-54b^3=2\left(a^3-27b^3\right)=2\left(a-3b\right)\left(a^2+3ab+9b\right)\)

23 tháng 4 2021

Bài 2 : tự kết luận nhé, ngại mà lười :( 

a, \(\frac{4x+3}{5}-\frac{6x-2}{7}=\frac{5x+4}{3}+3\)

\(\Leftrightarrow\frac{4x-3}{5}-\frac{5x-4}{3}=\frac{6x-2}{7}+3\)

\(\Leftrightarrow\frac{12x-9-25x+20}{15}=\frac{6x-2+21}{7}\)

\(\Leftrightarrow\frac{-13x-29}{15}=\frac{6x+19}{7}\Rightarrow-91x-203=90x+285\)

\(\Leftrightarrow181x=-488\Leftrightarrow x=-\frac{488}{181}\)

b, \(\frac{x+2}{3}+\frac{3\left(2x-1\right)}{4}-\frac{5x-3}{6}=x+\frac{5}{12}\)

\(\Leftrightarrow\frac{4x+8+9\left(2x-1\right)}{12}-\frac{10x-6}{12}=\frac{12x+5}{12}\)

\(\Rightarrow4x+8+18x-9-10x+6=12x+5\)

\(\Leftrightarrow12x+5=12x+5\Leftrightarrow0x=0\)

Vậy phương trình có vô số nghiệm 

c, \(\left|2x-3\right|=4\)

Với \(x\ge\frac{3}{2}\)pt có dạng : \(2x-3=4\Leftrightarrow x=\frac{7}{2}\)

Với \(x< \frac{3}{2}\)pt có dạng : \(2x-3=-4\Leftrightarrow x=-\frac{1}{2}\)

d, \(\left|3x-1\right|-x=2\Leftrightarrow\left|3x-1\right|=x+2\)

Với \(x\ge\frac{1}{3}\)pt có dạng : \(3x-1=x+2\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}\)

Với \(x< \frac{1}{3}\)pt có dạng : \(3x-1=-x-2\Leftrightarrow4x=-1\Leftrightarrow x=-\frac{1}{4}\)

Câu 1: Phân tích thành nhân tử:a. \(x^4+x\left(2016x+1\right)-2016\left(x-1\right)\)b. \(\left(x^2\left(y+1\right)+4\right)^2-\left(4x^2+y+1\right)^2\)c. \(x^4+4\)d. \(x^4+x^2+2x+6\)Câu 2:a. Cho \(x=a+\frac{1}{a};y=b+\frac{1}{b};z=ab+\frac{1}{ab}\left(a,b\ne0\right)\)Tính giá trị của \(M=x^2+y^2+z^2-xyz\)b.Cho hai số a,b thoả a-b=ab=1. Tính giá trị của \(N=a^6+2a^4b^2+a^2b^4+9b^2+1989\)c.1.1. Cho đa thức \(P\left(x\right)=x^2-\left(m^2-2\right)x+m-35\)Xác định m...
Đọc tiếp

Câu 1: Phân tích thành nhân tử:

a. \(x^4+x\left(2016x+1\right)-2016\left(x-1\right)\)

b. \(\left(x^2\left(y+1\right)+4\right)^2-\left(4x^2+y+1\right)^2\)

c. \(x^4+4\)

d. \(x^4+x^2+2x+6\)

Câu 2:

a. Cho \(x=a+\frac{1}{a};y=b+\frac{1}{b};z=ab+\frac{1}{ab}\left(a,b\ne0\right)\)Tính giá trị của \(M=x^2+y^2+z^2-xyz\)
b.Cho hai số a,b thoả a-b=ab=1. Tính giá trị của \(N=a^6+2a^4b^2+a^2b^4+9b^2+1989\)

c.

1.1. Cho đa thức \(P\left(x\right)=x^2-\left(m^2-2\right)x+m-35\)Xác định m để đa thức P(x) không có nghiệm bằng 5.

1.2. Cho đa thức \(Q\left(x\right)=ax^2+bx+c\)Viết a khác 0 và Q(x)>0 với mọi x thuộc R. Chừng minh: \(\frac{9a-5b+3c}{4a-2n+c}>2\)

Câu 3:

a. Tìm x,y là số tự nhiên, biết \(5^x=2^y+124\)

b.

1.1) Nếu a+b+c là số chẵn thì chứng minh: \(m=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)là số chẵn

1.2) Nếu a+b+c chia hết cho 6 thì chứng minh: \(n=\left(a+b\right)\left(b+c\right)\left(c+a\right)-2abc\)chia hết cho 6

 

0
18 tháng 9 2019

Câu 1: \(x^2+\frac{1}{x^2}-4x-\frac{4}{x}+6=0\)

\(\Leftrightarrow\left(x^2+\frac{1}{x^2}\right)-4\left(x+\frac{1}{x}\right)+6=0\)

\(\text{Đặt a = }x+\frac{1}{x}\)

\(\Rightarrow a^2=\left(x+\frac{1}{x}\right)^2=x^2+2.x.\frac{1}{x}+\left(\frac{1}{x}\right)^2=x^2+2+\frac{1}{x^2}\)

\(\Rightarrow x^2+\frac{1}{x^2}=a^2-2\)

Thay vào phương trình ta có:

\(\left(a^2-2\right)-4a+6=0\)

\(\Leftrightarrow a^2-2-4a+4=0\)

\(\Leftrightarrow a^2-4a+4=0\)

\(\Leftrightarrow\left(a-2\right)^2=0\)

\(\Leftrightarrow a-2=0\)

\(\Rightarrow x+\frac{1}{x}-2=0\)\(ĐKXĐ:x\ne0\)

\(\Leftrightarrow\frac{x^2+1-2x}{x}=0\)

\(\Leftrightarrow x^2-2x+1=0\)

\(\Leftrightarrow\left(x-1\right)^2=0\)

\(\Leftrightarrow x-1=0\)

\(\Leftrightarrow x=1\)
Vậy x=1

18 tháng 9 2019

Xực e lm đúng mà bn em bảo làm sai nữa chứ hmm :)

https://i.imgur.com/u6zkAVa.jpg
14 tháng 2 2020

Bài 3:

a) \(\left(x-6\right).\left(2x-5\right).\left(3x+9\right)=0\)

\(\Leftrightarrow\left(x-6\right).\left(2x-5\right).3.\left(x+3\right)=0\)

\(3\ne0.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\2x-5=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\2x=5\\x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=\frac{5}{2}\\x=-3\end{matrix}\right.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{6;\frac{5}{2};-3\right\}.\)

b) \(2x.\left(x-3\right)+5.\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right).\left(2x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\2x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\frac{5}{2}\end{matrix}\right.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{3;-\frac{5}{2}\right\}.\)

c) \(\left(x^2-4\right)-\left(x-2\right).\left(3-2x\right)=0\)

\(\Leftrightarrow\left(x^2-2^2\right)-\left(x-2\right).\left(3-2x\right)=0\)

\(\Leftrightarrow\left(x-2\right).\left(x+2\right)-\left(x-2\right).\left(3-2x\right)=0\)

\(\Leftrightarrow\left(x-2\right).\left(x+2-3+2x\right)=0\)

\(\Leftrightarrow\left(x-2\right).\left(3x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{1}{3}\end{matrix}\right.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{2;\frac{1}{3}\right\}.\)

Chúc bạn học tốt!

14 tháng 2 2016

moi hok lop 6

14 tháng 2 2016

Xem lại cái dề ban ơi cau 1 dấy

 

20 tháng 10 2018

chào bê đê

26 tháng 3 2015

tach phan nguyên nhí bn