Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề, ta có: P(1)=0 và P(0)=3
=>2-3a+3b=0 và 2*0-3*0*a+3b=3
=>3b=3 và -3a+3b=-2
=>b=1 và -3a=-2-3b=-5
=>a=5/3 và b=1
c. Thay x = -1 vào A(x) và B(x) ta có:
A(-1) = 0, B(-1) = 2
Vậy x = -1 là nghiệm của A(x) nhưng không là nghiệm của B(x) (1 điểm)
a)⇔A= x4+2x3-5x+9+2x4-2x3= 3x4-5x+9
⇔B= 2x2-6x+2-3x4-2x2+3x-4= -3x4-3x-2
b)A(x)+B(x)= 3x4-5x+9-3x4-3x-2= -8x+7
A(x)-B(x)= 3x4-5x+9+3x4+3x+2= 6x4-2x+1
c)C(x) có hệ số tự do bằng 0 nên có nghiệm bằng 0
d)A(x)+5x= 3x4+9. Tại x bất kì thì 3x4≥0 ⇔ 3x4+9 ≥ 9 ≥ 0
⇒ H(x) vô nghiệm
\(a,A\left(x\right)=-3x^3+2x^2-6+5x+4x^3-2x^2-4-4x\\ =\left(-3x^3+4x^3\right)+\left(2x^2-2x^2\right)+\left(5x-4x\right)+\left(-6-4\right)\\ =x^3+0+x-10\\ =x^3+x-10\)
Bậc của đa thức \(3\)
Hệ số cao nhất là \(1\)
\(b,B\left(x\right)=A\left(x\right).\left(x-1\right)=\left(x^3+x-10\right)\left(x-1\right)\\ =x^3.x+x.x-10x-x^3-x+10\\ =x^4+x^2-x^3-x-10x+10\\ =x^4-x^3+x^2-11x+10\)
Thay \(x=2\) vào \(B\left(x\right)\)
\(=2^4-2^3+2^2-11.2+10\\ =0\)
Vậy tại \(x=2\) thì \(B\left(x\right)=0\)
b. Ta có:
A(x) + B(x) = x2 + 2x + 1 + x2 + 1 = 2x2 + 2x + 2 (0.5 điểm)
A(x) - B(x) = x2 + 2x + 1 - (x2 + 1) = 2x (0.5 điểm)
Câu 1
Do x = 2 là nghiệm của A(x)
⇒⇒A(2) = 0
2.2² + a.2 + b = 0
8 + 2a + b = 0
b = -8 - 2a (1)
Do x = 3 là nghiệm của A(x)
⇒ A(3) = 0
2.3² + a.3 + b = 0
18 + 3a + b = 0 (2)
Thay (1) vào (2) ta được:
18 + 3a + (-8 - 2a) = 0
18 + 3a - 8 - 2a = 0
a + 10 = 0
a = -10
Thay a = -10 vào (1) ta được:
b = -8 - 2.(-10)
= 12
Vậy a = -10; b = 12
Đặt \(A\left(x\right)=0\Rightarrow2x^2+ax+b=0\) \(\left(1\right)\)
Thay \(x=2\) vào \(\left(1\right)\Rightarrow2.2^2+2a+b=0\)
\(\Rightarrow2a+b=-8\left(2\right)\)
Thay \(x=3\) vào \(\left(1\right)\Rightarrow2.3^2+3a+b=0\)
\(\Rightarrow3a+b=-18\left(3\right)\)
Từ \(\left(2\right),\left(3\right)\Rightarrow\left\{{}\begin{matrix}a=-10\\b=12\end{matrix}\right.\)
Vậy \(a=-10,b=12\)