Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)ta có AB=AD(giả thiết)
=> CA là đường trung tuyến của BD
CA vuông góc với BD (t/g ABC vuông tại A)
=>CA là đường cao của BD
mà CA là đường trung tuyến của BD(chứng minh trên)
=>t/g BCD cân tại C
=>CA cũng là p/g của t/g ABC
=>góc BCA= góc DCA
Xét t/g BEC và t/g DEC
góc BCA= góc DCA
BC=CD(t/g BCD cân tại C)
EC: cạnh chung
Suy ra t/g BEC= t/g DEC(c-g-c)
c) trên trung tuyến CA có CE/AC=6-2/6=2/3
=>ba đường trung tuyến của t/g BCD đồng quy tại E
=>DE là đường trung tuyến của BC
=>DE đi qua trung điểm BC
a)áp dụng định lý pitago ta có BC^2=AB^2+AB^2=8^2+6^2=100
=>BC=10
b ) Ta có AB = AD ( gt )
=> CA là đường trung tuyến của BD
CA vuông góc với BD ( t/g ABC vuông tại A )
=> Ca là đường cao của BD
mà CA là đường trung tuyến của BD ( chứng minh trên )
t/g BCD cân tại C
=> CA cũng là p/g của t/g ABC
=> góc BCA = góc DCA
BC = CD ( t/g BCD cân tại C )
EC : cạnh chung
suy ra t/g BEC = t/g DEC ( c - g - c )
c ) Trên trung tuyến CA có CE/AC = 6-2/6 = 2/3
ba đường trung tuyến của t/g BCD đồng quy tại E
=> DE là đường trung tuyến của BC
=> DE đi qua trung điểm BC
a) Áp dụng định lí Pi-ta-go vào tam ABC có:
BC^2=AB^2+AC^2
BC^2=8^2+6^2
BC^2=64+36
<=>BC^2=96
BC^2=căn bậc của 96=bạn tự tính nha
a, Xét \(\Delta ABC\)vuông tại A có :
\(BC^2=AB^2+ AC^2\)
\(BC^2=8^2+6^2\)
\(BC^2=64+36\)
\(BC^2=100\)
\(BC=10\)(cm)
b, Xét \(\Delta ABE\)và \(\Delta BDE\)có :
\(AB=AD\)(gt)
\(\widehat{BAE}=\widehat{DAE}=90^o\)(gt)
AE là cạnh chung
=> \(\Delta ABE=\Delta BDE\)(c.g.c)
=> BE = DE
=> \(\widehat{E_1}=\widehat{E_2}\)
Ta có :
\(\widehat{E_1}+\widehat{E_3}=180^o\)(2 góc kề bù)
\(\widehat{E_2}+\widehat{E_4}=180^o\)(2 góc kề bù)
mà \(\widehat{E_1}=\widehat{E_2}\)(cmt)
=> \(\widehat{E_3}=\widehat{E_4}\)
Xét \(\Delta BEC\)và \(\Delta DEC\)có :
\(\widehat{E_3}=\widehat{E_4}\) (chứng minh trên)
EC là cạnh chung
BE = DE (chứng minh trên)
=> \(\Delta BEC\) = \(\Delta DEC\) (c.g.c )
Dễ mà p áp dụng Pytago câu a, còn mấy câu kia mìh lm` biến vẽ hìh Cm qá p ơi.
Đáp án:
a) Vì ΔΔABC vuông tại A (Aˆ=90oA^=90o)
=> AB2+AC2=BC2AB2+AC2=BC2 (ĐL Pi-ta-go)
=> BC2=82+62=100BC2=82+62=100
=> BC=10BC=10cm
b) Vì AB = AD (gt)
mà A ∈∈ BD (gt)
=> A trung điểm BD (ĐN trung điểm)
=> CA trung tuyến BD (ĐN trung tuyến)
lại có: CA ⊥⊥ BD (AB ⊥⊥ AC do Aˆ=90oA^=90o)
=> ΔΔCBD cân tại C (dhnb)
=> BC = CD (ĐN ΔΔ cân)
và CA là phân giác của BCDˆBCD^ (t/c ΔΔ cân)
=> C1ˆ=C2ˆC1^=C2^ (ĐN tia p/g)
Xét ΔΔBEC và ΔΔDEC có:
BC = CD (cmt)
C1ˆ=C2ˆC1^=C2^ (cmt)
EC: cạnh chung
=> ΔΔBEC = ΔΔDEC (c.g.c)
c) Vì CE là trung tuyến của ΔΔBCD (cmt)
mà AEAC=26=13AEAC=26=13 (AE = 2cm, AC = 6cm)
=> E là trọng tâm ΔΔBCD (dhnb)
=> DE là trung tuyến ΔΔBCD (ĐN trọng tâm)
=> DE đi qua trung điểm của BC (ĐN trung tuyến)
a) Xét tam giác ABC vuông tại A có
\(BC^2=AB^2+AC^2\)(Định lý Pytago)
\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{8^2+6^2}=10\left(cm\right)\)
b) Ta có: A là trung điểm BD( do AD=AB)
\(CA\perp BD\)( do tam giác ABC vuông tại A)
=> CA là đường trung trực của đoạn thẳng BD
=> \(\left\{{}\begin{matrix}CD=CB\\\widehat{BCE}=\widehat{DCE}\end{matrix}\right.\)
Xét tam giác BEC và tam giác DEC có
CD=CB(cmt)
\(\widehat{BCE}=\widehat{DCE}\left(cmt\right)\)
CE chung
=> ΔBEC=ΔDEC(c.g.c)
a: Áp dụng tính chất của dãy tỉ số bằng nhau vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
hay BC=10(cm)
Bạn tự vẽ hình nhé
a)
Áp dụng định lý Py-ta-go vào \(\Delta ABC:\)
\(BC^2=AB^2+AC^2\\ \Rightarrow BC^2=8^2+6^2\\ \Rightarrow BC^2=64+36\\ \Rightarrow BC^2=100\\ \Rightarrow BC=10\left(cm\right)\)
b)
Xét \(\Delta BGC\) và \(\Delta DGC\) có:
\(AB=AD\left(GT\right)\\ AG:chung\\ \widehat{BAC}=\widehat{DAC}\left(=90^o\right)\)
\(\Rightarrow\Delta BGC=\Delta DGC\left(c-g-c\right)\)
c)
Xét \(\Delta BCD\) có:
\(AB=AD\left(GT\right)\\ \dfrac{AG}{DG}=\dfrac{2}{6}=\dfrac{1}{3}\Rightarrow\dfrac{CG}{AC}=1-\dfrac{1}{3}=\dfrac{2}{3}\)
=> G là trọng tâm của \(\Delta BCD\)
=> DG là đường trung tuyến của \(\Delta BCD\) ứng với cạnh BC
Hay DG đi qua trung điểm BC