Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(A=\dfrac{n-3}{n-2}=\dfrac{n-2-1}{n-2}=1-\dfrac{1}{n-2}\)
Để A nhận giá trị nguyên thì \(1⋮\left(n-2\right)\) hay \(\left(n-2\right)\inƯ\left(1\right)=\left\{\pm1\right\}\)
\(\left(+\right)\) \(n-2=1\)
\(\Rightarrow n=3\)
\(\left(+\right)\) \(n-2=-1\)
\(\Rightarrow n=1\)
Vậy \(n\in\left\{3;1\right\}\)
Bài 2:
a) Để B là phân số thì n -3 \(\ne\)0 => n\(\ne\)3
b) Để B có giá trị là số nguyên thì n+4 \(⋮\)n-3
\(\frac{n+4}{n-3}\)= \(\frac{n-3+7}{n-3}\)= \(\frac{7}{n-3}\)Vì n+4 \(⋮\)n-3 nên 7 \(⋮\)n-3
=> n-3 \(\in\)Ư(7) ={ 1;7; -1; -7}
=> n\(\in\){ 4; 10; 2; -4}
Vậy...
c) Bn thay vào r tính ra
Để biểu thức A đạt giá trị nguyên
<=> 3 chia hết cho (n-2)
Vì 3 chia hết cho n-2 => (n-2) thuộcƯ(3)={-3;-1;1;3}
Ta có bảng sau:
n-2 | -3 | -1 | 1 | 3 |
n | -1 | 1 | 3 | 5 |
Vậy để biểu thức A đạt giá trị nguyên <=> n thuộc {-1;1;3;5}
Ta có :
\(A=\frac{14}{n+1}+\frac{-3}{n+1}=\frac{14-3}{n+1}=\frac{11}{n+1}\)
Để A là số nguyên thì \(11\) phải chia hết cho \(n+1\)\(\Rightarrow\)\(\left(n+1\right)\inƯ\left(11\right)\)
Mà \(Ư\left(11\right)=\left\{1;-1;11;-11\right\}\)
Suy ra :
\(n+1\) | \(1\) | \(-1\) | \(11\) | \(-11\) |
\(n\) | \(0\) | \(-2\) | \(10\) | \(-12\) |
Vậy \(n\in\left\{-12;-2;0;10\right\}\)
Chúc bạn học tốt ~
A= \(\frac{14}{n+1}+\frac{-3}{n+1}\)
A= \(\frac{11}{n+1}\)
Để A nhận gt nguyên thì \(11⋮n+1\)
\(\Rightarrow n+1\inƯ_{\left(11\right)}=\left\{\pm1;\pm11\right\}\)
Ta có bảng sau:
n+1 | 1 | -1 | 11 | -11 |
n | 0 | -2 | 10 | -12 |
Vậy \(n\in\left\{0;-2;10;-12\right\}\)
n-3/n+2= n+2-5/n+2=1-5/n+2
Để biểu thức nhận giá trị nguyên thì n+2 phải thuộc ước của 5
TH1: n+2=5 --> n=3
TH2: n+2=-5 --> n=-7
TH3: n+2=1--> n=-1
TH4: n+2=-1 --> n=-3