Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có 2n+11 chia hết cho n+3
2n+6 +5 chia hết cho n+3
2(n+3)+5 chia hết cho n+3
vì 2(n+3) chia hết cho n+3 nên 5 chia hết cho n+3
=)n+3 là Ư(5) và Ư(5)={-1;1;-5;5}
từ đó ta có bảng sau
n+3 | n |
-1 | -4 |
1 | -2 |
-5 | -8 |
5 | 2 |
A = \(\frac{2n+1}{n-3}+\frac{3n-5}{n-3}-\frac{4n-5}{n-3}\)
= \(\frac{2n+1+3n-5-4n+5}{n-3}\)
= \(\frac{n+1}{n-3}\)= \(\frac{\left(n-3\right)+4}{n-3}\)= \(1+\frac{4}{n-3}\)
Để A nhận giá trị nguyên <=> \(1+\frac{4}{n-3}\inℤ\)<=> \(\frac{4}{n-3}\inℤ\)<=> \(n-3\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\)
Ta lập bảng giá trị:
n-3 | -4 | -2 | -1 | 1 | 2 | 4 |
n | -1 | 1 | 2 | 4 | 5 | 7 |
Vậy...
\(A=\dfrac{-\left(6-2n\right)+5}{3-n}=\dfrac{-2\left(3-n\right)+5}{3-n}=-2+\dfrac{5}{3-n}\)
Để A nguyên => 3-n = Ước của 5
\(\Rightarrow3-n=\left\{-5;-1;1;5\right\}\Rightarrow n=\left\{8;4;2;-2\right\}\)
a) \(A=\frac{2n+1+3n-5-4n+5}{n-3}=\frac{n+1}{n-3}\)
b) \(A=\frac{n+1}{n-3}=\frac{n-3+4}{n-3}=1+\frac{4}{n-3}\)
Để A đạt giá trị nguyên thì \(\frac{4}{n-3}\)đạt giá trị nguyên <=> \(n-3\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\)
Tới đây lập bảng tìm n.