K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2020

Câu 2 : \(f\left(x\right)=x^3-ax^2+bx-a\)

Áp dụng định lý Bezout ta có:

\(f\left(x\right)⋮\left(x-1\right)\)\(\Rightarrow f\left(1\right)=0\)

\(\Rightarrow1^3-a.1^2+b.1-a=1-a+b-a=0\)

\(\Leftrightarrow1-2a+b=0\)\(\Leftrightarrow2a-b=1\)(1)

\(\Rightarrow3\left(2a-b\right)=3\)\(\Rightarrow6a-3b=3\)(2)

\(f\left(x\right)⋮\left(x-3\right)\)\(\Rightarrow f\left(3\right)=0\)

\(\Rightarrow3^3-a.3^2+3b-a=27-9a+3b-a=0\)

\(\Leftrightarrow27-10a+3b=0\)\(\Leftrightarrow10a-3b=27\)(3)

Từ (2) và (3)

\(\Rightarrow\left(10a-3b\right)-\left(6a-3b\right)=27-3\)

\(\Leftrightarrow10a-3b-6a+3b=24\)

\(\Leftrightarrow4a=24\)\(\Leftrightarrow a=6\)

Thay \(a=6\)vào (1) ta có:

\(2.6-b=1\)\(\Leftrightarrow12-b=1\)\(\Leftrightarrow b=11\)

Vậy \(a=6\)và \(b=11\)

12 tháng 12 2020

Đề đúng chưa v

17 tháng 4 2022

Mình có nghĩ ra cách này mọi người xem giúp mình với

f(x) = \(ax^2+bx+c\) 

Ta có f(0) = 2 => c = 2

Ta đặt Q(x) = \(ax^2+bx+c-2020\)

và G(x) = \(ax^2+bx+c+2021\)

f(x) - 2020 chia cho x - 1 hay Q(x) chia cho x - 1 được số dư

\(R_1\) = Q(1) = \(a.1^2+b.1+c-2020=a+b+c-2020\)  

Mà Q(x) chia hết cho x-1 nên \(R_1\) = 0

hay \(a+b+c-2020=0\). Mà c = 2 => a + b = 2018 (1)

G(x) chia cho x + 1 số dư 

\(R_2\) = G(-1) = \(a.\left(-1\right)^2+b.\left(-1\right)+c+2021=a-b+2+2021\)

Mà G(x) chia hết cho x + 1 nên \(R_2\)=0

hay \(a-b+2+2021=0\) => \(a-b=-2023\) (2)

Từ (1) và (2) suy ra: \(\left\{{}\begin{matrix}a+b=2018\\a-b=-2023\end{matrix}\right.\)

Vậy \(\left\{{}\begin{matrix}a=-\dfrac{5}{2}\\b=\dfrac{4041}{2}\end{matrix}\right.\)

17 tháng 4 2022

ko biết !!!

3 tháng 10 2021

\(f\left(x\right)=ax^2+bx+2020\\ \Leftrightarrow f\left(\sqrt{3}-1\right)=a\left(4-2\sqrt{3}\right)+b\left(\sqrt{3}-1\right)+2020=2021\\ \Leftrightarrow4a-2a\sqrt{3}+b\sqrt{3}-b-1=0\\ \Leftrightarrow\left(4a-b-1\right)-\sqrt{3}\left(2a-b\right)=0\\ \Leftrightarrow4a-b-1=\sqrt{3}\left(2a-b\right)\)

Vì a,b hữu tỉ nên \(4a-b-1;2a-b\) hữu tỉ

Mà \(\sqrt{3}\) vô tỉ nên \(\sqrt{3}\left(2a-b\right)\) hữu tỉ khi \(2a-b=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}4a-b-1=0\\2a-b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=1\end{matrix}\right.\)

\(\Leftrightarrow f\left(1+\sqrt{3}\right)=\dfrac{1}{2}\left(4+2\sqrt{3}\right)+1+\sqrt{3}+2020=2023+2\sqrt{3}\)