Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1
a) <=> 3x-2=|2x+1|
<=> \(\left[\begin{array}{nghiempt}3x-2=2x+1\\2-3x=2x+1\end{array}\right.\)<=>\(\left[\begin{array}{nghiempt}x=3\\x=\frac{1}{5}\end{array}\right.\)
b)các phân só cần tìm a,b,c ta có a+b+c=213/70
và a:b:c=\(\frac{3}{5}:\frac{4}{1}:\frac{5}{2}\)=6:40:25
=> a= 9/35
b=12/7
c=15/14
Câu 2: => \(\frac{7.2x+x}{7}=\frac{1}{y}\)=> y(14x+1)=7
=> (x,y)=(0;7)
1) ADTCDTSBN, ta có:
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)= \(\frac{2x^2+2y^2-3z^2}{18+32-75}=\frac{-100}{-25}\)= 4
* \(\frac{x}{3}=4\)=> x = 3 . 4 = 12
- \(\frac{y}{4}=4\)=> y = 4 . 4 = 16
* \(\frac{z}{5}=4\)=> z = 5 . 4 = 20
Vậy x = 12
y = 16
z = 20
a, Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{3}=\frac{x+y}{2+3}=\frac{10}{5}=2\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=5\Rightarrow x=10\\\frac{y}{3}=5\Rightarrow y=10\end{cases}}\)
Vậy x = 10, y = 10
b, Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{7}=\frac{y}{8}=\frac{2x+3y}{2.7+3.8}=\frac{4}{60}=\frac{1}{12}\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{7}=\frac{1}{12}\Rightarrow x=\frac{7}{12}\\\frac{y}{8}=\frac{1}{12}\Rightarrow y=\frac{2}{3}\end{cases}}\)
Vậy ...
\(c,3x=4y\Rightarrow\frac{x}{4}=\frac{y}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{4}=\frac{y}{3}=\frac{x-y}{4-3}=\frac{1}{1}=1\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{4}=1\Rightarrow x=4\\\frac{y}{3}=1\Rightarrow y=3\end{cases}}\)
Vậy ....
d,Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{3}=\frac{y}{4}=\frac{x-y}{3-4}=\frac{48}{\left(-1\right)}=\left(-48\right)\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{3}=\left(-48\right)\Rightarrow x=-144\\\frac{y}{4}=\left(-48\right)\Rightarrow y=-192\end{cases}}\)
Vậy ...
đừng nên dựa vào trang này quá
bài trên thuộc dạng SGK , SBT mà không làm được à
Bài 2:
$P=\frac{x^2+y^2+3}{x^2+y^2+2}=\frac{(x^2+y^2+2)+1}{x^2+y^2+2}=1+\frac{1}{x^2+y^2+2}$
Ta thấy:
$x^2\geq 0; y^2\geq 0$ với mọi $x,y$
$\Rightarrow x^2+y^2+2\geq 2$
$\Rightarrow P\leq 1+\frac{1}{2}=\frac{3}{2}$
Vậy GTNN của $P$ là $\frac{3}{2}$
Giá trị này đạt tại $x^2=y^2=0\Leftrightarrow x=y=0$
a )
\(3\left|2x-1\right|+1=\left(-2\right)^2-3\left(-2\right)^3\)
\(\Rightarrow3\left|2x-1\right|+1=4-3.-8\)
\(\Rightarrow3\left|2x-1\right|+1=4-\left(-24\right)\)
\(\Rightarrow3\left|2x-1\right|+1=28\)
\(\Rightarrow3\left|2x-1\right|=28-1\)
\(\Rightarrow3\left|2x-1\right|=27\)
\(\Rightarrow\left|2x-1\right|=27:3\)
\(\Rightarrow\left|2x-1\right|=9\)
\(\Rightarrow\orbr{\begin{cases}2x-1=9\\2x-1=-9\end{cases}\Rightarrow\orbr{\begin{cases}2x=10\\2x=-8\end{cases}}}\)
\(\Rightarrow\orbr{\begin{cases}x=5\\x=-4\end{cases}}\)
Vậy \(\orbr{\begin{cases}x=5\\x=-4\end{cases}}\)
b )
\(x^2\left(x+2\right)+4\left(x+2\right)=0\)
\(\Rightarrow\left(x^2+4\right)\left(x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2+4=0\\x+2=0\end{cases}\Rightarrow\orbr{\begin{cases}x^2=-4\left(L\right)\\x=-2\end{cases}\Rightarrow}x=-2}\)
Vậy \(x=-2\)
~ Ủng hộ nhé