K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
17 tháng 3 2017
Bài 1:
\(S=\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)
\(=\left(\dfrac{a}{b+c}+1\right)+\left(\dfrac{b}{c+a}+1\right)+\left(\dfrac{c}{a+b}+1\right)-3\)
\(=\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{c+a}+\dfrac{a+b+c}{a+b}-3\)
\(=\left(a+b+c\right)\left(\dfrac{1}{b+c}+\dfrac{1}{c+a}+\dfrac{1}{a+b}\right)-3\)
\(=2007.\dfrac{1}{90}-3\)
\(=19,3\)
Vậy S = 19,3
17 tháng 3 2017
5b)\(S=1+3+3^2+...+3^{2013}\)
\(\Rightarrow3S=3+3^2+3^3+...+3^{2014}\)
\(\Rightarrow3S-S=3^{2014}-1\)
\(\Rightarrow S=\dfrac{3^{2014}-1}{2}\)
Bài 1: $x$ có thêm điều kiện gì không bạn?
Bài 2:
$P=\frac{x^2+y^2+3}{x^2+y^2+2}=\frac{(x^2+y^2+2)+1}{x^2+y^2+2}=1+\frac{1}{x^2+y^2+2}$
Ta thấy:
$x^2\geq 0; y^2\geq 0$ với mọi $x,y$
$\Rightarrow x^2+y^2+2\geq 2$
$\Rightarrow P\leq 1+\frac{1}{2}=\frac{3}{2}$
Vậy GTNN của $P$ là $\frac{3}{2}$
Giá trị này đạt tại $x^2=y^2=0\Leftrightarrow x=y=0$