K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2017

Câu 1:

a) \(2x^2-6x\)

\(Cho:2x^2-6x=0\Leftrightarrow x\left(2x-6\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x=0\\2x-6=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=0\\x=3\end{cases}}\)

Vậy nghiệm của đa thức: \(2x^2-6x\) là: \(\hept{\begin{cases}x=0\\x=3\end{cases}}\)

b)\(2x^2-4x\)

\(Cho:2x^2-4x=0\Leftrightarrow x\left(2x-4\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x=0\\2x-4=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x=2\end{cases}}}\)

Vây đa thức \(2x^2-4x\) có nghiệm là: \(\hept{\begin{cases}x=0\\x=2\end{cases}}\)

c)\(2x^2-8x\)

\(Cho:2x^2-8x=0\Leftrightarrow x\left(2x-8\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x=0\\2x-8=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x=4\end{cases}}}\)

Vậy đa thức \(2x^2-8x\) có nghiêmk là: \(\hept{\begin{cases}x=0\\x=4\end{cases}}\)

1: Xét ΔABC có

BD,CE là trung tuyến

BD cắt CE tại G

=>G là trọng tâm

=>GD=1/3BD và GE=1/3CE

mà BD=CE

nên GD=GE

=>GB=GC

2: Xét ΔGBE và ΔGCD có

GB=GC

góc BGE=góc CGD

GE=GD

=>ΔGBE=ΔGCD

3: ΔGBE=ΔGCD

=>BE=CD

=>AB=AC

=>ΔBAC cân tại A

4 tháng 3 2023

Câu này làm thế nào vậy mn

giúp mình với

 

4 tháng 3 2023

xét ΔECB và ΔDBC, ta có : 

EC = BD (gt)

\(\widehat{B}=\widehat{C}\) (2 góc đáy của ΔABC cân tại A)

BC là cạnh chung

=> ΔECB = ΔDBC (c.g.c)

=> \(\widehat{GBC}=\widehat{GCB}\) (2 góc tương ứng)

vì ΔGBC có \(\widehat{GBC}=\widehat{GCB}\) nên ⇒ ΔGBC là một tam giác cân (cân tại G)

4 tháng 3 2023

câu 2 : 

a) có phải là chứng minh AM ⊥ BC không

xét ΔAMB và ΔAMC, ta có : 

AB = AC (2 cạnh bên của ΔABC cân tại A)

MB = MC (AM là đường trung tuyến của cạnh BC)

AM là cạnh chung

=> ΔAMB = ΔAMC (c.c.c)

=> \(\widehat{AMB}=\widehat{AMC}\) (2 cạnh tương ứng)

mà \(\widehat{AMB}+\widehat{AMC}=180^O\) (kề bù)

\(\Rightarrow\widehat{AMB}=\widehat{AMC}=\dfrac{180^O}{2}=90^O\)

=> AM ⊥ BC

4 tháng 3 2023

loading...

A) Vì ΔABC cân tại A nên AB = AC

Ta có: AB = EB + AE mà AE = EB (gt)

          AC = AD + DC mà AD = DC (gt)

==> BE = DC

Xét ΔBEC và ΔCDB ta có

         BE = DC (cmt)

         BC chung

         ∠ABC = ∠ACB (gt)

==> ΔBEC = ΔCDB (c-g-c)

DG+EG=1/3BD+1/3CE=2/3BD=BG>1/2BC

Xét ΔABD và ΔACE có

AB=AC

góc BAD chung

AD=AE

=>ΔABD=ΔACE
Sửa đề: ΔGBC cân tại G

Xét ΔEBC và ΔDCB có

EB=DC

góc EBC=góc DCB

BC chung

=>ΔEBC=ΔDCB

=>góc GBC=góc GCB

=>ΔGBC cân tại G

a: Xét ΔABD và ΔACE có

AB=AC

\(\widehat{BAD}\) chung

AD=AE

Do đó: ΔABD=ΔACE

b: Ta có: ΔABD=ΔACE

nên AD=AE

hay ΔADE cân tại A

14 tháng 5 2022

refer

 

a: Xét ΔABD và ΔACE có

AB=AC

ˆBADBAD^ chung

AD=AE

Do đó: ΔABD=ΔACE

b: Ta có: ΔABD=ΔACE

nên AD=AE

hay ΔADE cân tại A