K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔABD và ΔACE có

AB=AC

góc BAD chung

AD=AE

=>ΔABD=ΔACE
Sửa đề: ΔGBC cân tại G

Xét ΔEBC và ΔDCB có

EB=DC

góc EBC=góc DCB

BC chung

=>ΔEBC=ΔDCB

=>góc GBC=góc GCB

=>ΔGBC cân tại G

4 tháng 3 2023

Câu này làm thế nào vậy mn

giúp mình với

 

4 tháng 3 2023

xét ΔECB và ΔDBC, ta có : 

EC = BD (gt)

\(\widehat{B}=\widehat{C}\) (2 góc đáy của ΔABC cân tại A)

BC là cạnh chung

=> ΔECB = ΔDBC (c.g.c)

=> \(\widehat{GBC}=\widehat{GCB}\) (2 góc tương ứng)

vì ΔGBC có \(\widehat{GBC}=\widehat{GCB}\) nên ⇒ ΔGBC là một tam giác cân (cân tại G)

28 tháng 4 2019

a) BE = DC, ΔBEC = ΔCDB.

Vì ΔABC cân tại A nên: AB = AC.

Ta lại có: AB = AE + EB mà AE = EB (gt)

AC = AD + DC mà AD = DC (gt) 

⇒ AE = EB = AD = DC

Vậy BE = DC.

Xét ΔBEC và ΔCDB có:

BE = CD (cmt)

∠ABC = ∠ACB (ΔABC cân)

BC : cạnh chung.

Do đó: ΔBEC = ΔCDB (c.g.c)

b) ΔBGC cân.

Vì ΔBEC = ΔCDB (câu a) 

⇒ ∠ECB = ∠DBC (hai góc tương ứng)

⇒ ΔBGC cân tại G.

Câu c và hình chờ xíu :v  

28 tháng 4 2019

c) BC <4GD

Kẻ trung tuyến AG ⇒ G là trọng tâm của ΔABC, mà ΔABC cân (gt) ⇒ AG là phân giác của ∠BAC (∠A1 = ∠A2

AG cắt BC tại H (HB = HC)

Xét ΔABH và ΔACH có:

AB = AC (gt)

BH = HC (cmt)

AH : chung

Do đó: ΔABH = ΔACH (c.c.c)

⇒ ∠H1 = ∠H2 (hai góc tương ứng) Mà ∠H1 + ∠H2 = 180o

⇒ ∠H1 = ∠H2 = 180o : 2 = 90o hay AH ⊥ BC.

Vì ΔBGC cân tại G nên: GB = GC (hai cạnh đáy) Mà GB = 2GD 

⇒ 4GD = DB + GC.

Xét ΔBGH vuông tại H, ta có: BG > BH (định lí) (1)

Xét ΔCGH vuông tại H, ta có: CG > CH (định lí) (2)

Từ (1) và (2) suy ra: BG + CG > BH + CH

Mà GB + CG = 4GD (cmt) và CB = BH + CH

⇒ 4GD > BC 

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có 

AB=AC

\(\widehat{A}\) chung

Do đó: ΔABD=ΔACE

b: Xét ΔBDC vuông tại D và ΔCEB vuông tại E có 

BD=CE

BC chung

Do đó: ΔBDC=ΔCEB

Suy ra: \(\widehat{HBC}=\widehat{HCB}\)

hay ΔHBC cân tại H

c: Xét ΔABC có

AE/AB=AD/AC

Do đó: DE//BC

4 tháng 3 2023

câu 2 : 

a) có phải là chứng minh AM ⊥ BC không

xét ΔAMB và ΔAMC, ta có : 

AB = AC (2 cạnh bên của ΔABC cân tại A)

MB = MC (AM là đường trung tuyến của cạnh BC)

AM là cạnh chung

=> ΔAMB = ΔAMC (c.c.c)

=> \(\widehat{AMB}=\widehat{AMC}\) (2 cạnh tương ứng)

mà \(\widehat{AMB}+\widehat{AMC}=180^O\) (kề bù)

\(\Rightarrow\widehat{AMB}=\widehat{AMC}=\dfrac{180^O}{2}=90^O\)

=> AM ⊥ BC

4 tháng 3 2023

loading...

a) Xét ΔABD vuông tại D và ΔACE vuông tại E có 

AB=AC(ΔABC cân tại A)

\(\widehat{BAD}\) chung

Do đó: ΔABD=ΔACE(cạnh huyền-góc nhọn)

Xét ΔBDC vuông tại D và ΔCEB vuông tại E có 

BC chung

BD=CE(ΔABD=ΔACE)

Do đó: ΔBDC=ΔCEB(cạnh huyền-cạnh góc vuông)

31 tháng 3 2018

a)Xét tam giác ABD và tam giác ACE,ta có:

A là góc chung

AB=AC(ví tam giác ABC cân tại A)

AE=AD(gt)

=> tam giác ABD=tam giác ACE(c.g.c)=>BD=CE( 2 cạnh tương ứng)

b)Vì BD,CE lần lượt là đường trung tuyến mà lại giao nhau tại G(mà BD=CE)=>GE=GD=1/3 BD=1/3 CE

=>EG=GD

Xét tam giác AEG và tam giác ADG ,ta có:

GE=GD(c/m trên)

AE=AD(gt)

AG cạnh chung

=>tam giác AEG=tam giác ADG(c.c.c)

=>góc EAG=góc DAG=>AG là tia p/g góc A

c)Ta có: Vì K là trung điểm AG;I là trung điểm GC và AD=DC

=>AI;CK:GD lần lượt là đường trung tuyến tam giác AGC=>BD;CK;AI đồng quy(t/c 3 đường trung tuyến của tam giác)

23 tháng 2 2023

hình đâu bạn

27 tháng 1 2019

tu ve hinh : 

AH cat BC tai O
xet tamgiac HAB va tamgiac HAC co : 

BH = CH do tamgiac HBC can tai H (gt)

BA = CA do tamgiac ABD = tamgiac ACE (gt)

AH chung 

nen tamgiac HAB = tamgiac HAC  (c - c - c)

=> goc BAH = goc CAH (dn)               (1)

goc DAB = goc EAC (dd)                     (2)

goc DAB + goc DAH = goc BAH         (3)

goc CAE + goc EAH = goc EAC           (4)

(1)(2)(3)(4) => goc DAH = goc HAE                (5)

xet tamgiac DHA va tamgiac EHA co : goc HDA = goc HEA do CD | BH va BE | CH (gt)          (6)

AH chung            (7)

(5)(6)(7) => tamgiac DHA = tamgiac EHA (ch - gn)

=> goc OHB = goc OHC (dn)         (8)

tamgiac HBC can tai H => BH = HC va goc HBO = goc HCO         (9)

(8)(9) => tamgiac HBO = tamgiac HCO (g - c - g)

=> goc HOB = goc HOC (dn)  va OB = OC (dn)

goc HOB + goc HOC = 180 do (kb)

=> HOC = 90 do => AH  |  BC (dn) 

=> AH la trung truc cua BC