Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A là số cần tìm. Ta có: A= 5m^5 = 3.n^3 = 2.p^2
Như vậy A có các ước nguyên tố 5,3,2. Mà A là số bé nhất thỏa mãn nên ta có A = 5^a.3^b.2^c
Xét nhân tử 5^a, vì A/3=n^3, A/2=p^2 nên n^3,p^2 chứa nhân tử 5^a=> a phải chia hết cho 2,3
Mặt khác A=5.m^5 nên a chia 5 dư 1 => a nhỏ nhất là 6
Tương tự ta có b chia hết cho 2,5, chia 3 dư 1 nên b nhỏ nhất là 10
c chia hết cho 5,3 chia 2 dư 1 nên c nhỏ nhất là 15
Vậy A nhỏ nhất là 5^6.3^10.2^15. Thử lại thỏa mãn.
a) \(3.3.3 = {3^3}\); \(6.6.6.6 = {6^4}\)
b)
\({3^2}\) còn gọi là “3 mũ 2” hay “bình phương của 3”; \({5^3}\) còn gọi là “5 mũ 3” hay “lập phương của 5”.
c) Ba mũ mười có cơ số là 3 và số mũ là 10
Mười mũ năm có cơ số là 10 và số mũ là 5
1 , 2 thừa số x
2, 3 thừa số x
1 , 2 thừa số x
2, 3 thừa số x