K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: n2 + n + 1 = n(n + 1) + 1

Ta có n(n + 1) là tích của hai số tự nhiên liên tiếp nên tận cùng bằng 0, 2, 6. Suy ra n(n + 1) + 1 tận cùng bằng 1, 3, 7 nên n2 + n + 1 không chia hết cho 5.

TRẢ LỜI:

Ta có: n2 + n + 1 = n(n + 1) + 1

Ta có n(n + 1) là tích của hai số tự nhiên liên tiếp nên tận cùng bằng 0, 2, 6. Suy ra n(n + 1) + 1 tận cùng bằng 1, 3, 7 nên n2 + n + 1 không chia hết cho 5.

Hok tốt

18 tháng 5 2017

\(A=n^2+n+1\left(n\in N\right)\\ A=n\cdot n+n\cdot1+1\\ A=n\cdot\left(n+1\right)+1\)

a) Ta có: \(n\cdot\left(n+1\right)\) là tích hai số tự nhiên liên tiếp, sẽ có một trong hai số là số chẵn \(\Rightarrow n\cdot\left(n+1\right)⋮2\)

\(1⋮̸2\) \(\Rightarrow n\cdot\left(n+1\right)+1⋮̸2\Leftrightarrow A⋮̸2\)

Vậy \(A⋮̸2\)

b)

Ta có: \(n\cdot\left(n+1\right)\) là tích hai số tự nhiên liên tiếp có chữ số tận cùng là 0, 2, 6 \(\Rightarrow\) \(n\cdot\left(n+1\right)+1\) có chữ số tận cùng là 1, 3, 7 không chia hết chia 5

Vậy \(A⋮̸5\)

18 tháng 5 2017

\(A=n^2+n+1=n\left(n+1\right)+1\left(n\in N\right)\)

a) Vì n và n+1 là 2 số tự nhiên liên tiếp , mà trong 2 số tự nhiên liên tiếp sẽ có một số chẵn .

=> n(n+1) là số chẵn

=> n(n+1) + 1 là số lẻ

=> A không chia hết cho 2 ( đpcm )

b) Xét tận cùng của n có thể là 0;1;2;3;4;5;6;7;8;9

=> n+1 có thể có tận cùng là 1;2;3;4;5;6;7;8;9

=> n(n+1) có thể có tận cùng là 0;2;6

=> n(n+1)+1 có tận cùng là 1;3;7

Vậy A không chia hết cho 5 ( đpcm)

20 tháng 10 2018

1.

Trường hợp 1:

Nếu n=2k

Thì n.(n+5)=2k.(2k+5)

Vì 2k chia hết cho 2 nên tích n.(n+1) chia hết cho 2

Trường hợp 2:

Nếu n=2k+1

Thì n.(n+1)=2k+1(2k+1+1)

=>(2k+1)(2k+2)

Vì 2k+2 chia hết cho 2 nên tích n(n+1) chia hết cho 2

2.

\(n^2+n+1\)

\(n^2+n=n.n+n.1=n.\left(n+1\right)\)

\(\text{Vì :}n.\left(n+1\right)\text{là tích hai số tự nhiên liên tiếp nên có tận cùng là : 2,6,0}\)

\(\text{Vậy}.n\left(n+1\right)+1\text{sẽ có tận cùng là 3,7,1}\)

Vì tận cùng là 3,7,1 nên A không chia hết cho 2, không chia hết cho 5 (đpcm)

Chúc bạn học tốt!!!

20 tháng 10 2018

1. TH1 : n là số chẵn.

\(\Rightarrow n⋮2\Rightarrow n\left(n+5\right)⋮2\)

TH2 : n là số lẻ

\(\Rightarrow\left(n+5\right)⋮2\Rightarrow n\left(n+5\right)⋮2\)

Từ đó \(\Rightarrow n\left(n+5\right)⋮2\)với mọi \(n\in N\)

2. a) TH1 : Nếu n là số lẻ \(\Rightarrow n^2\)là số lẻ \(\Rightarrow\left(n^2+2\right)⋮2\)

1 là số lẻ \(\Rightarrow\left(n^2+n+1\right)̸\)không chia hết cho 2         (1)

TH2 : Nếu n là số chẵn \(\Rightarrow n^2\)là số chẵn \(\Rightarrow\left(n^2+2\right)⋮2\)

1 là số lẻ \(\Rightarrow\left(n^2+n+1\right)̸\)không chia hết cho 2         (2)

Từ (1) và (2) \(\Rightarrow A\)không chia hết cho 2 với mọi \(n\in N\)

b) 

22 tháng 1 2018

a) Ta xét các trường hợp:

+)  Với n = 3k  \(\left(k\in Z\right)\), ta có \(\left(n-1\right)\left(n+2\right)+12=\left(3k-1\right)\left(3k+2\right)+12\)

Ta thấy (3k - 1)(3k + 2) không chia hết cho 3, 12 chia hết cho 3 nên (3k - 1)(3k + 2) + 12 không chia hết cho 3 hay (3k - 1)(3k + 2) + 12 không chia hết cho 9.

+)  Với n = 3k + 1 \(\left(k\in Z\right)\), ta có \(\left(n-1\right)\left(n+2\right)+12=3k\left(3k+3\right)+12=9k\left(k+1\right)+12\)

Ta thấy \(9k\left(k+1\right)⋮9;12⋮̸9\Rightarrow9k\left(k+1\right)+12⋮̸9\)

+) Với n = 3k + 2 \(\left(k\in Z\right)\), ta có: \(\left(n-1\right)\left(n+2\right)+12=\left(3k+1\right)\left(3k+4\right)+12\)

Ta thấy (3k + 1)(3k + 4) không chia hết cho 3, 12 chia hết cho 3 nên (3k + 1)(3k + 4) + 12 không chia hết cho 3 hay (3k + 1)(3k + 4) + 12 không chia hết cho 9.

b) Tương tự bài trên.

16 tháng 8 2016

1) Không có số tự nhiên nào nhỏ hơn 1 chia 5 dư 3

2) + Nếu n lẻ thì n + 5 chẵn => n + 5 chia hết cho 2 =>n.(n + 5) chia hết cho 2

+ Nếu n chẵn thì n chia hết cho 2 => n.(n + 5) chia hết cho 2

=> n.(n + 5) luôn chia hết cho 2

3) A = n2 + n + 1

A = n.(n + 1) + 1

a) Do n.(n + 1) là tích 2 số tự nhiên liên tiếp =>n.(n + 1) chia hết cho 2 mà 1 không chia hết cho 2

=> A không chia hết cho 2

b) Do n.(n + 1) là tích 2 số tự nhiên liên tiếp => n.(n + 1) chỉ có thể tận cùng là 0; 2; 6

=> A = n.(n + 1) + 1 chỉ có thể tận cùng là 1; 3; 7 không chia hết cho 5

21 tháng 10 2015

2,

+ n chẵn

=> n(n+5) chẵn 

=> n(n+5) chia hết cho 2

+ n lẻ

Mà 5 lẻ

=> n+5 chẵn => chia hết cho 2

=> n(n+5) chia hết cho 2

KL: n(n+5) chia hết cho 2 vơi mọi n thuộc N

21 tháng 10 2015

3, 

A = n2+n+1 = n(n+1)+1

a, 

+ Nếu n chẵn

=> n(n+1) chẵn 

=> n(n+1) lẻ => ko chia hết cho 2

+ Nếu n lẻ

Mà 1 lẻ

=> n+1 chẵn

=> n(n+1) chẵn

=> n(n+1)+1 lẻ => ko chia hết cho 2

KL: A không chia hết cho 2 với mọi n thuộc N (Đpcm)

b, + Nếu n chia hết cho 5

=> n(n+1) chia hết cho 5

=> n(n+1)+1 chia 5 dư 1

+ Nếu n chia 5 dư 1

=> n+1 chia 5 dư 2

=> n(n+1) chia 5 dư 2

=> n(n+1)+1 chia 5 dư 3

+ Nếu n chia 5 dư 2

=> n+1 chia 5 dư 3

=> n(n+1) chia 5 dư 1

=> n(n+1)+1 chia 5 dư 2

+ Nếu n chia 5 dư 3

=> n+1 chia 5 dư 4

=> n(n+1) chia 5 dư 2

=> n(n+1)+1 chia 5 dư 3

+ Nếu n chia 5 dư 4

=> n+1 chia hết cho 5

=> n(n+1) chia hết cho 5

=> n(n+1)+1 chia 5 dư 1

KL: A không chia hết cho 5 với mọi n thuộc N (Đpcm)

3 tháng 1 2016

a)A=n2+n+1

=n.(n+1)+1

Vì n;n+1 là 2 số tự nhiên liên tiếp nên: n.(n+1) chia hết cho 2 hay n.(n+1) là số chẵn

=>A=n.(n+1)+1 là số lẽ không chia hết cho 2