K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét (O) có 

OM là một phần đường kính

CD là dây

OM\(\perp\)CD tại M

Do đó: M là trung điểm của CD

Xét tứ giác OCAD có 

M là trung điểm của CD

M là trung điểm của OA

Do đó: OCAD là hình bình hành

mà OC=OD

nên OCAD là hình thoi

a: Xét ΔCAO có

CM vừa là đường cao, vừa là trung tuyến

=>ΔCAO cân tại C

=>CA=CO

ΔOCD cân tại O

mà OM là đường cao

nên M là trung điểm của CD

Xét tứ giác OCAD có

M là trung điểm chung của OA và CD

OC=CA

=>OCAD là hình thoi

b:

Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔACB vuông tại C

=>góc CAB+góc CBA=90 độ

=>góc CBA=90-60=30 độ

Xét ΔBCD có

BM vừa là đường cao, vừa là trung tuyến

=>ΔBCD cân tại B

mà BM là đường cao

nên BM là phân giác của góc CBD

=>góc CBD=2*góc CBM=60 độ

=>ΔCBD đều

1: Xét \(\left(O\right)\) có 

OA là một phần đường kính

CD là dây

OA\(\perp\)CD tại H

Do đó: H là trung điểm của CD

Xét tứ giác OCAD có

H là trung điểm của đường chéo CD

H là trung điểm của đường chéo OA

Do đó: OCAD là hình bình hành

mà OC=OD

nên OCAD là hình thoi

2: Ta có: OCAD là hình thoi

nên OC=OD=AC=AD

mà OA=OC

nên OC=OD=AC=AD=OA

Xét ΔOAC có OA=OC=AC

nên ΔOAC đều

25 tháng 2 2020

Giúp mình với ạ <3 

26 tháng 2 2020

d, Vi ED la tiep tuyen (chung minh tren) => tam giac EDF vuong tai D

co \(\widehat{CDE}=\frac{1}{2}sd\widebat{DC}=\frac{1}{2}\widehat{COD}=\frac{1}{2}.120=60^o\)

ma \(\widehat{CED}+\widehat{COD}=180^o\Rightarrow\widehat{CED}=180-120=60^o\)

suy ra \(\Delta CED\) deu => EC=CD (1)

mat khac cung co \(\widehat{CFD}=\widehat{CDF}\) (phu hai goc bang nhau)

=> tam giac CDF can tai C

suy ra CD=CF (2)

tu (1),(2) suy ra dpcm

6 tháng 11 2016

A B C D M O

a. ta có OM vuông góc CD (OA vuông góc CD:gt)

M là trung điểm CD (bán kính vuông góc dây cung tại trung điểm dây cung)

M là trung điểm OA

=> tứ giác ACOD có hai đường chéo cắt nhau tại trung điểm mỗi đường là hình bình hành

mà OC = OD (bán kính)

=> hình bình hành ACOD có hai cạnh kề bằng nhau là hình thoi

b. ta có: BM = OB + OM = OB + 1/2OA = OB +1/2OB = 3/2OB

 OB = 2/3 OM

mà BM là trung tuyến của tam giác BCD

=> O là trọng tâm tam giác BCD

mà O cũng là tâm đường tròn ngoại tiếp tam giác BCD

=> tam giác BCD có trọng tâm cũng là tâm đường tròn ngoại tiếp tam giác là tam giác đều

5 tháng 11 2016

mọi người giúp tớ bài này vs

16 tháng 8 2021

O A B C D H M

a, xét tam giác CHA và tg CHO có : CH chung

AH = HO do H là trđ của AO (gt)

^CHA = ^CHO = 90

=> tg CHA = tg CHO (2cgv)

=> CH = CO

có AB _|_ CD => A là điểm chính giữa của cung CD => AC = AD mà OC  = OD 

=> AC = CO = OD = DA

=> ACOD là hình thoi

b, C thuộc đường tròn đường kính AB => ^ACB = 90 => AC _|_ CB

có AC // DO do ACOD là hình thoi 

=> DO _|_ CB  

M là trung điểm của dây BC (Gt) => OM _|_ BC (định lí)

=> D;O;M thẳng hàng

c, xét tg ACB có ^ACB = 90 và CH _|_ AB

=> AH.HB = CH^2

=> 4AH.HB = 4CH^2

=> 4AH.HB = (2CH)^2

mà 2CH = CD

=> CD^2 = 4AH.HB

a: Xét ΔCAO có 

CM là đường trung tuyến ứng với cạnh AO

CM là đường cao ứng với cạnh AO

Do đó: ΔCAO cân tại C

mà OA=OC

nên ΔCAO đều

24 tháng 9 2021

còn 2 câu nữa ạ giúp em với