Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 2:
+Nếu có 1 số dương và 12 số còn lại là âm thì tích của số dương đó với 2 số âm bất kì trong 12 số âm còn lại sẽ là số dương(mâu thuẫn với đề bài)
+Nếu có 2 số dương và 11 số còn lại là âm thì tích của 1 trong 2 số dương đó với 2 số âm bất kì trong 11 số âm còn lại sẽ là số dương(mâu thuẫn với đề bài)
+Nếu có từ 3 số dương trở lên thì tích 3 số dương đó sẽ là số dương(mâu thuẫn với đề bài)
Vậy cả 13 số đã cho đều là số âm
Câu 1:
Ta có: \(\left\{{}\begin{matrix}xy=\dfrac{2}{3}\\yz=0,6\\zx=0,625\end{matrix}\right.\)\(\Rightarrow xyyzzx=\dfrac{2}{3}.0,6.0,625\)
\(\Rightarrow\left(xyz\right)^2=0,25\)
\(\Rightarrow xyz=\sqrt{0,25}=\pm0,5\)
Mà \(\left\{{}\begin{matrix}xy=\dfrac{2}{3}\\yz=0,6\\zx=0,625\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}z=xyz\div xy\\x=xyz\div yz\\y=xyz\div zx\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}z=\dfrac{\pm3}{4}\\x=\dfrac{\pm5}{6}\\y=\dfrac{\pm4}{5}\end{matrix}\right.\)
Vậy: \(\left\{{}\begin{matrix}x=\dfrac{\pm5}{6}\\y=\dfrac{\pm4}{5}\\z=\dfrac{\pm3}{4}\end{matrix}\right.\)
Câu hỏi của Đông Phí Mạnh - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo tại đây nhé.
Câu hỏi của Đông Phí Mạnh - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo bài tương tự tại đây nhé.
Câu hỏi của Đông Phí Mạnh - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo tại đây nhé.
a) Ta có \(\widehat{ACE}=\widehat{DCB}\left(=60^o+\widehat{DCE}\right)\)
Xét tam giác DCB và tam giác ACE có:
DC = AC (gt)
CB = CE (gt)
\(\widehat{ACE}=\widehat{DCB}\) (cmt)
\(\Rightarrow\Delta DCB=\Delta ACE\left(c-g-c\right)\)
\(\Rightarrow DB=AE\) (Hai cạnh tương ứng)
b) Do \(\Delta DCB=\Delta ACE\Rightarrow\widehat{NBC}=\widehat{MEC}\)
Do DB = AE nên ME = NB
Xét tam giác CME và tam giác CNB có:
ME = NB (cmt)
CE = CB (gt)
\(\widehat{MEC}=\widehat{NBC}\) (cmt)
\(\Rightarrow\Delta CME=\Delta CNB\left(c-g-c\right)\)
c) Vì \(\Delta CME=\Delta CNB\Rightarrow CM=CN;\widehat{MCE}=\widehat{NCB}\)
Suy ra \(\widehat{MCE}+\widehat{ECN}=\widehat{NCB}+\widehat{ECN}=\widehat{ECB}=60^o\)
\(\Rightarrow\widehat{MCN}=60^o\)
Xét tam giác CMN có CM = CN nên nó là tam giác cân.
Lại có \(\widehat{MCN}=60^o\) nên CMN là tam giác đều.