Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi x là thời gian đi thì thời gian về là x+18[phút]
gọi y là quãng đường ab[km]
theo bài ra ta có hệ phương trình
\(25\cdot x=y\)
\(\left(25-5\right)\cdot\left(x+18\right)=y\)
từ hệ trên ta có \(25\cdot x=\left(x+18\right)\cdot20\)
suy ra x=72
đổi 72 phút = 1.2 giờ
suy ra quãng đường ab dài: \(25\cdot1,2=30km\)
36 phút = 0,6 giờ
Gọi vân tốc lúc đi là x thì vận tốc lúc về là x+3
=> Thời gian lúc đi là 36/x; thời gian lúc về là 36/(x+3)
Ta có phương trình
\(\frac{36}{x}-\frac{36}{x+3}=0,6\Leftrightarrow x^2+3x-180=0\)
Giải phương trình bậc 2 tự làm nhé
Gọi x (km/h) là vận tốc của người đi xe đạp từ A đến B (x >0)
x + 5 là vận tốc là vận tốc lúc đi từ B về A
Thời gian mà người đó đi từ A đến B: \(\frac{60}{x}\) (h)
Thời gian mà người đó đi từ B về A: \(\frac{60}{x+5}\) (h)
Vì thời gian lúc về ít hơn thời gian đi là 1 giờ nên ta có phương trình:
\(\frac{60}{x}-\frac{60}{x+5}=1\) (ĐKXĐ: \(x\ne0\); \(x\ne-5\))
\(\Leftrightarrow\frac{60x+300-60x}{x\left(x+5\right)}=\frac{x^2+5x}{x\left(x+5\right)}\)
\(\Leftrightarrow x^2+5x-300=0\)
\(\Leftrightarrow x^2-15x+20x-300=0\)
\(\Leftrightarrow\left(x-15\right)\left(x+20\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=15\left(nhan\right)\\x=-20\left(loai\right)\end{cases}}\)
Vậy vận tốc của người đó đi từ A đến B là 15km/h
Gọi x (km/h) là vận tốc của người đi xe đạp từ A đến B (x >0)
x + 5 là vận tốc là vận tốc lúc đi từ B về A
Thời gian mà người đó đi từ A đến B: \(\frac{60}{x}\) (h)
Thời gian mà người đó đi từ B về A: \(\frac{60}{x+5}\) (h)
Vì thời gian lúc về ít hơn thời gian đi là 1 giờ nên ta có phương trình:
\(\frac{60}{x}-\frac{60}{x+5}=1\) (ĐKXĐ: \(x\ne0\); \(x\ne-5\))
\(\Leftrightarrow\frac{60x+300-60x}{x\left(x+5\right)}=\frac{x^2+5x}{x\left(x+5\right)}\)
\(\Leftrightarrow x^2+5x-300=0\)
\(\Leftrightarrow x^2-15x+20x-300=0\)
\(\Leftrightarrow\left(x-15\right)\left(x+20\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=15\left(nhan\right)\\x=-20\left(loai\right)\end{cases}}\)
Vậy vận tốc của người đó đi từ A đến B là 15km/h
Gọi x là chiều dài của HCN
—» chiều rộng HCN = x - 7
Áp dụng định lý pitago ta có :
13² = (x - 7 )² + x²
<=> 169 = x² - 14x + 49 + x²
<=> 120 = 2x² - 14x
<=> 2x² - 14x - 120 = 0
x= -5 ( loại khoảng cách không âm ) và
x = 12 (nhận) Suy ra chiều rộng bằng:
12 - 7 = 5m
Vậy chiều dài bằng 12 và chiều rộng bằng 5
Bai này dễ lớp 9 là sao
Gọi vận tốc của người đi xe máy trên 3/4 quãng đường AB đầu (90 km) là x (km/h) (x > 0)
Vận tốc của người đi xe máy trên 1/4 quãng đường AB sau là 0,5x (km/h)
Vận tốc của người đi xe máy khi quay trở lại A là x + 10 (km/h)
Tổng thời gian của chuyến đi là 90 x + 30 0 , 5 x + 120 x + 10 + 1 2 = 8 , 5
⇔ 90 x + 60 x + 120 x + 10 = 8 ⇔ 150 x + 120 x + 10 = 8 ⇔ 75 ( x + 10 ) + 60 x = 4 x ( x + 10 ) ⇔ 4 x 2 − 95 x − 750 = 0 ⇔ x = 30 ( d o x > 0 )
Vậy vận tốc của xe máy trên quãng đường người đó đi từ B về A là 30 + 10 = 40 (km/h)
ơ chị ơi bài này lớp 8 mà
e lớp 8 này
câu 1 :
3x+2=2x-5
3x-2x=-7
x=-7
b,(2x+1)(x-1)=0
<=> 2x+1=0 => x= -1/2
<=> x-1=0 => x=1
bài 3 :
gọi S ab là x ( x>0)
ta có :
thời gian đi từ A-B là : x/15
thời gian đi từ B-A là : x/12
thời gian về nhiều hơn t đi là : 45p=3/4 (h)
ta có pt :
\(\frac{x}{12}-\frac{x}{15}=\frac{3}{4}\)
\(\frac{5x}{60}-\frac{4x}{60}=\frac{45}{60}\)
\(x=45\)
vậy AB dài 45 km
bài 2 e ngại làm lắm , bài hình thì thôi e chịu =.=
xl nha mk viết lộn nên chọn lộn lun