Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(\dfrac{1}{2}m+3\right)^3=\dfrac{m^3}{8}+\dfrac{9m^2}{4}+\dfrac{27m}{2}+9\)
b) \(2\left(m+\dfrac{1}{2}\right)=2m+1\)
c) \(\left(2\sqrt{x}+1\right)^2=4x+4\sqrt{x}+1\)
d) \(\left(2\sqrt{2}+\dfrac{1}{4}\right)^2=8+\sqrt{2}+\dfrac{1}{16}=\dfrac{129}{16}+\sqrt{2}\)
Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn.
a) PT \(\Leftrightarrow\left(x+1\right)^4+\sqrt{\left(x+1\right)^2+9}=3\).
Ta có \(\left(x+1\right)^4+\sqrt{\left(x+1\right)^2+9}\ge\sqrt{9}=3\).
Đẳng thức xảy ra khi và chỉ khi x = -1.
Vậy..
b) \(x^2=\sqrt{x^3-x^2}+\sqrt{x^2-x}\)
Đk: \(\left\{{}\begin{matrix}x^3-x^2\ge0\\x^2-x\ge0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x^2\left(x-1\right)\ge0\\x\left(x-1\right)\ge0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x\ge1\\x=0\end{matrix}\right.\\\left[{}\begin{matrix}x\ge1\\x\le0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x\ge1\end{matrix}\right.\)
Thay x=0 vào pt thấy thỏa mãn => x=0 là một nghiệm của pt
Xét \(x\ge1\)
Pt \(\Leftrightarrow x^4=\left(\sqrt{x^3-x^2}+\sqrt{x^2-x}\right)^2\le2\left(x^3-x\right)\) (Theo bđt bunhiacopxki)
\(\Leftrightarrow x^4\le2x\left(x^2-1\right)\le\left(x^2+1\right)\left(x^2-1\right)=x^4-1\)
\(\Leftrightarrow0\le-1\) (vô lí)
Vậy x=0
c) \(\sqrt{x-1}+\sqrt{3-x}+x^2+2x-3-\sqrt{2}=0\) (đk: \(1\le x\le3\))
Xét x-1=0 <=> x=1 thay vào pt thấy thỏa mãn => x=1 là một nghiệm của pt
Xét \(x\ne1\)
Pt\(\Leftrightarrow\dfrac{x-1}{\sqrt{x-1}}+\dfrac{1-x}{\sqrt{3-x}+\sqrt{2}}+\left(x-1\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(\dfrac{1}{\sqrt{x-1}}-\dfrac{1}{\sqrt{3-x}+\sqrt{2}}+x+3\right)=0\) (1)
Xét \(\dfrac{1}{\sqrt{x-1}}-\dfrac{1}{\sqrt{3-x}+\sqrt{2}}+x+3\)
Có \(\sqrt{3-x}+\sqrt{2}\ge\sqrt{2}\)
\(\Leftrightarrow\dfrac{-1}{\sqrt{3-x}+\sqrt{2}}\ge-\dfrac{1}{\sqrt{2}}\)
Có \(\left\{{}\begin{matrix}\dfrac{1}{\sqrt{x-1}}>0\\x+3\ge4\end{matrix}\right.\) \(\Rightarrow\dfrac{1}{\sqrt{x-1}}-\dfrac{1}{\sqrt{3-x}+\sqrt{2}}+x+3>0-\dfrac{1}{\sqrt{2}}+4>0\)
Từ (1) => x-1=0 <=> x=1
Vậy pt có nghiệm duy nhất x=1
đặt \(\sqrt{2-x}=a;\sqrt{2+x}=b\) \(\left(a+b\ge0\right)\)=> \(2-x=a^2;2+x=b^2\)=> \(a^2+b^2=4\)
=> Ta có hệ phương trình mới sau khi đặt 2 ẩn phụ là a; b
\(\hept{\begin{cases}a^2+b^2=4\\a+b+ab=2\end{cases}}\)<=> \(\hept{\begin{cases}\left(a+b\right)^2=4+2ab\\ab=2-a-b\end{cases}}\)Thay 2ab=4-2a-2b từ pt (2) lên pt (1) ta được:
=> \(\left(a+b\right)^2=4+4-2a-2b\)
<=> \(\left(a+b\right)^2+2\left(a+b\right)=8\)
<=> \(a+b=2\)hoặc \(a+b=-4\)
Do \(a+b\ge0\)=> \(a+b=2\)<=> \(ab=0\)
<=> \(a=0;b=2\)hoặc \(a=2;b=0\)
Trường hợp 1: a=0; b=2
Khi đó \(\sqrt{2-x}=0;\sqrt{2+x}=2\)<=> x=2
Trường hợp 2: a=2; b=0
Khi đó \(\sqrt{2-x}=2;\sqrt{2+x}=0\)và cũng ra x=2
Vậy pt có nghiệm duy nhất là x=2.
ĐK: \(-2\le x\le2\)
Đặt: \(\sqrt{2-x}+\sqrt{2+x}=t\ge0\)
=> \(t^2=4+2\sqrt{4-x^2}\)
=> \(\sqrt{4-x^2}=\frac{t^2-4}{2}\)
Ta có phương trình: \(t+\frac{t^2-4}{2}=2\)
<=? \(t^2+2t+1=9\)
<=> \(\left(t+1\right)^2=9\)
<=> \(\orbr{\begin{cases}t+1=3\\t+1=-3\end{cases}}\Leftrightarrow\orbr{\begin{cases}t=2\\t=-4\left(loai\right)\end{cases}}\)
Với t = 2 ta thay vào:
\(t^2=4+2\sqrt{4-x^2}\)
khi đó có phương trinh:
\(4=4+2\sqrt{4-x^2}\)
<=> \(\sqrt{4-x^2}=0\Leftrightarrow x=\pm2\)( thỏa mãn đk)
Vậy:...