K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2020

A B C x y z O

Ta có ^yBC = 180 -^B và ^zCB = 180-^C

Xét tam giác BOC có

^OBC = ^yBC/2 = (180-^B)/2

^OCB = ^zCB/2 = (180-^C)/2

^BOC = 180-(^OBC + ^OCB)=180-(180-^B)/2 - (180-^C)/2 = (^B + ^C)/2 (1)

Xét tg ABC có

^xAC = ^B+^C ( góc ngoài của 1 tam giác bằng tổng hai góc trong không kề với nó)

=> (^B+^C)/2 = ^xAC/2 (2)

Từ (1) và (2) => ^BOC = ^xAC/2 mà ^xAC là góc ngoài ở đỉnh A (dpcm)

30 tháng 7 2015

Trong tam giác ABC có góc BAC + ABC + ACB = 180 độ

\(\Rightarrow\) góc ABC + góc ACB = 180 độ - góc BAC = 180 độ - 60 độ = 120 (độ)

Ta có góc IBC + góc ICB = góc ABC/2 + góc ACB/2 = (góc ABC + góc ACB)/2 = 120 độ/2 = 60 (độ)

Trong tam giác IBC có góc BIC + góc IBC + góc ICB = 180 độ

\(\Rightarrow\) góc BIC = 180 độ - (góc IBC + góc ICB) = 180 độ - 60 độ = 120 độ

30 tháng 7 2015

BÀi này à 

Kẻ KD vuông góc AB, KE vuông góc BC, KF vuông góc AC

Xét ΔADK vuông tại D và ΔAFK vuông tại F có

AK chug

góc DAK=góc FAK

=>ΔADK=ΔAFK

=>KD=KF

Xét ΔCFK vuông tại F và ΔCEK vuông tại E có

CK chung

góc FCK=góc ECK

=>ΔCFK=ΔCEK

=>FK=EK=DK

=>K nằm trên tia phân giác của góc ABC

=>BK là phân giác của góc ABC

31 tháng 1 2022

undefined

a) Xét   \(\Delta ABC\) có tia phân giác \(BAC,ACB\)  cắt nhau tại O suy ra O là giao điểm của 3 đường phân giác trong tam giác ABC suy ra BO là phân giác của \(\widehat{CBA}\)   (tính chất 3 đường phân giác của tam giác)

\(\Rightarrow DBO=ABO=\dfrac{DBA}{2}\left(1\right)\) ( tính chất tia phân giác )

Lại có BF là phân giác của \(\widehat{ABx\left(gt\right)}\) \(=ABF=FBx\left(2\right)\)

( tính chất của tia phân giác ) 

Mà \(ABD+ABx=180^o\left(3\right)\left(kềbu\right)\)

Từ \(\left(1\right)\left(2\right)\left(3\right)\Rightarrow OBA+ABF=180^o\div2=90^o\Rightarrow BO\text{⊥ }BF\)

b) Ta có \(FAB+BAC=180^o\)( kề bù ) mà \(BAC=120^o\left(gt\right)\Rightarrow FAB=60^o\)

\(\Rightarrow\text{AD là phân giác của}\widehat{BAC}\)  ( dấu hiệu nhận biết tia phân  giác )

\(\Rightarrow BAD=CAD=60^o\) ( tính chất tia phân giác )

\(\Rightarrow FAy=CAD=60^o\) ( đối đỉnh ) \(\Rightarrow FAB=FAy=60^o\Rightarrow\) AF là tia phân giác của \(BAy\) ( dấu hiệu nhận biết tia phân giác )

Vậy \(\Delta ABD\) có hai tia phân giác của hai góc ngoài tại đỉnh A và đỉnh B cắt nhau tại F nên suy ra DF là phân giác của \(ADB=BDF=ADF\) ( tính chất tia phân giác )

c) Xét \(\Delta ACD\) có phân giác góc ngoài tại đỉnh A và phân giác trong tại đỉnh C cắt nhau tại E nên suy ra DE cũng là phân giác của \(ADB\Rightarrow\)\(D,E,F\) thẳng hàng 

 

 

 

31 tháng 1 2022

thật là ngược mộ nha

dù không biết đúng hay sai nhưng lâu lắm mới thấy người làm nguyên một bài toán hình thế này mà còn có hình nữayeu