Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
a. AB//CD (ABCD là hình bình hành) M thuộc AB N thuộc CD => BM // DN
Xét tứ giác AMCN có:
MB=DN (gt)
BM// DN
=> tứ giác AMCN là hình bình hành
b. Gọi giao điểm của AC và BD là O
=> O là trung điểm của AC và BD (tính chất hình bình hành)
Hình bình hành MBND có
O là trung điểm của BD
MN là đường chéo hình bình hành MBND
O là trung điểm MM
=> MN đi qua O
=> AC,BD,MN đồng quy tại một điểm
c.
Bài 2 :
a. AB = CD (ABCD là hình bình hành)
Mà AB = BE (A đối xứng E qua B)
=> CD=BE
AB // CD (ABCD là hình bình hành)
Mà E thuộc AC
=> CD//BE
Xét tứ giác DBEC:
CD=BE (CM)
CD//BE (CM)
=> DBEC là hình bình hành
b.
a) Ta có: BI + AI = AB
KD + CK = CD
Mà AI = CK; AB = CD
⇒ BI = KD
Xét ΔIBJ và ΔKDL có:
IB = KD
∠(IBJ) = ∠(KDL) (do ABCD là hình bình hành)
BJ = LD (gt)
⇒ ΔIBJ = ΔKDL (c.g.c)
⇒ IJ = KL
Chứng minh tương tự: ΔJCK= ΔLAI
⇒ JK = IL
Vậy tứ giác IJKL là hình bình hành (các cạnh đối bằng nhau)
b) Gọi O là giao điểm hai đường chéo AC và BD của hình bình hành ABCD ta có O là trung điểm của AC.
Lại có tứ giác AICK là hình bình hành (AI // CK và AI = CK )
⇒ đường chéo IK đi qua trung điểm O của AC.
Tứ giác IJKL là hình bình hành (cmt) ⇒ đường chéo JL đi qua trung điểm O của đường chéo IK.
Vậy bốn đường thẳng AC, BD, IK, JL đồng quy tại O.
Vì ABCD là hình bình hành
=> AB = CD
=> AD = BC
=> BAD = BCD
=> ABC = ADC
Ta có :
AI + IB = AB
KC + KD = CD
Mà AB = CD (cmt)
=> IB = KD
Xét ∆IBJ và ∆LDK ta có :
BJ = DL
DK = BI
ABC = ADC (cmt)
=> ∆IBJ = ∆LDK(c.g.c)
=> JI = LK ( tương ứng) (1)
Ta có :
AL + LD =AD
BJ + JC = BC
Mà BC = AD
=> LD = CJ
Xét ∆IAL và ∆JCK ta có :
AI = KC (gt)
JC = AL (cmt)
BAD = BCD (cmt)
=> ∆IAL = ∆JCK(c.g.c)
=> LI = JK ( tương ứng) (2)
Từ (1) và (2) ta có :
=> ILKJ là hình bình hành
=> AC và BD cắt nhau tại trung điểm mỗi đường
=> AC và BD cắt nhau tại trung điểm AC (*)
Xét ∆ABJ và ∆DLC ta có :
AB = CD(cmt)
ABC = ADC(cmt)
BJ = CL (gt)
=> ∆ABJ = ∆DLC (c.g.c)
=> JA = LC ( tương ứng) (3)
Mà AL = JC (cmt) (4)
Từ (3) và (4) ta có :
=> JALC là hình bình hành
=> AC và JL cắt nhau tại trung điểm mỗi đường
=> AC và JL cắt nhau tại trung điểm AC(**)
Mà JILK là hình bình hành
=> IK và LJ cắt nhau tại trung điểm mỗi đường
=> IK và LJ cắt nhau tại trung điểm LJ(***)
Từ (*)(**)(***) AC , BD , IK , LJ đồng quy tại 1 điểm
a: Xét tứ giác AECF có
AE//CF
AE=CF
Do đó: AECF là hình bình hành