Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔSBM và ΔSNB có
\(\widehat{SBM}=\widehat{SNB}\)
\(\widehat{BSM}\) chung
Do đó: ΔSBM\(\sim\)ΔSNB
Suy ra: SB/SN=SM/SB
hay \(SB^2=SM\cdot SN\)
b: Xét (O) có
SA là tiếp tuyến
SB là tiếp tuyến
Do đó: SA=SB
mà OA=OB
nên SO là đường trung trực của AB
=>SO⊥AB
Xét ΔOBS vuông tại B có BH là đường cao
nên \(SH\cdot SO=SB^2=SM\cdot SN\)
a) Ta có: \(\dfrac{3}{2}\sqrt{12}+\sqrt{75}-\sqrt{300}+\sqrt{27}\)
\(=3\sqrt{3}+5\sqrt{3}-10\sqrt{3}+3\sqrt{3}\)
\(=\sqrt{3}\)
b) Ta có: \(\sqrt{14-6\sqrt{5}}+\sqrt{9-4\sqrt{5}}\)
\(=3-\sqrt{5}+\sqrt{5}-2\)
=1
1 \(\Leftrightarrow\left\{{}\begin{matrix}15x-5y=40\\2x+5y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=3x-8=1\end{matrix}\right.\)
Ta có 1ml = 1cm3
Vậy thể tích của lọ đựng dung dịch đó là 100 cm3
Diện tích trong của đáy lọ là:
Ta có: V = S đáy * h => S đáy = V : h = 100 : 12.5 = 8 (cm2)
Câu 2:
a:
b: phương trình hoành độ giao điểm là:
\(2x^2=-x+3\)
=>\(2x^2+x-3=0\)
=>\(2x^2+3x-2x-3=0\)
=>(2x+3)(x-1)=0
=>\(\left[{}\begin{matrix}2x+3=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=1\end{matrix}\right.\)
Thay x=-3/2 vào (P), ta được:
\(y=2\cdot\left(-\dfrac{3}{2}\right)^2=2\cdot\dfrac{9}{4}=\dfrac{9}{2}\)
Thay x=1 vào (P), ta được:
\(y=2\cdot1^2=2\)
Vậy: (P) cắt (d) tại hai điểm là \(A\left(-\dfrac{3}{2};\dfrac{9}{2}\right);B\left(1;2\right)\)