Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
4 : 3 = tứ : tam = tám : tư = 8 : 4 = 2
Câu này xưa r`
Vì a : 5 dư 2
b: 5 dư 3
\(\Rightarrow\) a; b lần lượt có dạng 5k+2; 5k+3
\(\Rightarrow\)ab=(5k+2).(5k+3)
=5k(5k+3)+2(5k+3)
=25k2+15k+10k+6
=25k2+25k+5+1
=5.(5k2+5k+1)+1
Ta có : \(5⋮5\)\(\Rightarrow5.\left(5k^2+5k+1\right)⋮5\)
Mà 1:5 =0 dư 1
\(\Rightarrow5.\left(5k^2+5k+1\right)+1:5 \left(d\text{ư}1\right)\)
\(\Rightarrow ab:5 \left(d\text{ư}1\right)\)
Điều phải chứng minh
Đặt a = 5k + 2. b = 5x + 3 ( do a chia 5 dư 2, b chia 5 dư 3 )
=> ab = (5k+2)(5x+3) = 25kx+10x+15k + 6
Ta có 25kx chia hết cho 5, 10x chia hết cho 5, 15k chia hết cho 5, 6 chia 5 dư 1 => ab chia 5 dư 1
Chúc bạn học tốt ^_^
Bai 1:
(x-5)(3x+3)-3x(x-3)+3x+7
=x(3x+3)-5(3x+3)-(3x2-9x)+3x+7
=3x2+3x-15x+15-3x2+9x+3x+7
=22
=>biểu thức này không phụ thuộc vào giá trị của biến.
Bài 2:
(x+2)(x+1)-(x-3)(x+5)=0
x2+x+2x+2-x2-5x+3x+15=0
x+17=0
x= -17
a) \(x^2-8x+19=\left(x-4\right)^2+3>0\)
b) \(3x^2-6x+5=3\left(x-1\right)^2+2>0\)
c) \(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)
d) \(x^2-4x+7=\left(x-2\right)^2+3>0\)
e) \(x^2+x+2=\left(x+\frac{1}{2}\right)^2+\frac{7}{4}>0\)
f) do \(x^2\ge0\) với mọi x
nên \(x^2+8>0\)
Vì thg ra đề là 1 nhà phê cần học nên ta có:
2+2=5
Vậy 2+2=5
Theo định lí của nhà ngu học ta có 2+2=5