Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.tìm x
(x-15): 5+22=24
(x-15): 5=24-22=2.
(x-15)=2.5=10.
x=10+15=25.
42 - ( 2x + 32 ) + 12 : 2 = 6
= 42 - (2x + 32 ) + 6 = 6.
42 - (2x + 32 ) = 6-6=0.
(2x+32) = 42 - 0 = 0.
2x = 0 - 32 = 0.
x = 0 : 2 = 0.
(x -105) :21 =15
(x-105) = 15.21=315.
x = 315 + 105 = 420.
x-105 :21=15
= x - 5 = 15.
x= 15 + 5 = 20.
( 2x -6 ) -(3x +7 )=0
...
a, 3(x+3)-2(x-5)=11
=> 3x+9-2x+10=11
=> 3x-2x=11-10-9
=> x=-8
Vậy.........
b, 14-4|x|=-6
=> -4|x|=8
=> |x|=-2(VL vì trị tuyệt đối luôn lớn hơn hoặc = 0)
Vậy......
\(a,2x\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x=0\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x\in\forall Z\\x=1\end{cases}}}\)
\(b,x\left(2x-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\2x-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}}\)
\(c;\left(x+1\right)+\left(x+3\right)+...............+\left(x+99\right)=0\)
\(\Rightarrow\left(x+x+...........+x\right)+\left(1+3+............+99\right)=0\)
\(\Rightarrow50x+2500=0\)
\(\Rightarrow50x=-2500\)
\(\Rightarrow x=-50\)
2/
\(a;\left(x-3\right)\left(2y+1\right)=7\)
\(\Rightarrow\left(x-3\right);\left(2y+1\right)\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
Xét bảng
x-3 | 1 | -1 | 7 | -7 |
2y+1 | 7 | -7 | 1 | -1 |
x | 4 | 2 | 10 | -4 |
y | 3 | -4 | 0 | -1 |
Vậy...............................
\(b;xy+3x-2y=11\)
\(\Rightarrow x\left(y+3\right)-2y-6=11-6\)
\(\Rightarrow x\left(y+3\right)-2\left(y+3\right)=5\)
\(\Rightarrow\left(x-2\right)\left(y+3\right)=5\)
\(\Rightarrow\left(x-2\right);\left(y+3\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Xét bảng'
x-2 | 1 | -1 | 5 | -5 |
y+3 | 5 | -5 | 1 | -1 |
x | 3 | 1 | 7 | -3 |
y | 2 | -8 | -2 | -4 |
Vậy................................
a) \(x+xy-y=8\)
\(\Leftrightarrow x.\left(1+y\right)-y=8\)
\(\Leftrightarrow x.\left(1+y\right)-y-1=8-1\)
\(\Leftrightarrow x.\left(1+y\right)-\left(1+y\right)=7\)
\(\Leftrightarrow\left(1+y\right).\left(x-1\right)=7\)
Lập bảng tìm tiếp
b) Ta có: \(\hept{\begin{cases}\left(x+2\right)^2\ge0\forall x\\\left(2y-6\right)^4\ge0\forall x\end{cases}}\)
\(\Rightarrow\left(x+2\right)^2+\left(2y-6\right)^4\ge0\forall x\)
Do đó \(\left(x+2\right)^2+\left(2y-6\right)^4=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+2\right)^2=0\\\left(2y-6\right)^4=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=3\end{cases}}}\)
Vậy ...
Giải:
a) \(\dfrac{-5}{8}=\dfrac{x}{16}\)
\(\Rightarrow x=\dfrac{16.-5}{8}=-10\)
\(\dfrac{3x}{9}=\dfrac{2}{6}\)
\(\Rightarrow3x=\dfrac{2.9}{6}=3\)
\(\Rightarrow x=1\)
b) \(\dfrac{x+3}{15}=\dfrac{1}{3}\)
\(\Rightarrow x+3=\dfrac{1.15}{3}=5\)
\(\Rightarrow x=2\)
\(\dfrac{6}{2x+1}=\dfrac{2}{7}\)
\(\Rightarrow2x+1=\dfrac{6.7}{2}=21\)
\(\Rightarrow x=10\)
c) \(\dfrac{4}{x-6}=\dfrac{y}{24}=\dfrac{-12}{18}\)
\(\Rightarrow\dfrac{4}{x-6}=\dfrac{-12}{18}\)
\(\Rightarrow x-6=\dfrac{18.4}{-12}=-6\)
\(\Rightarrow x=0\)
\(\Rightarrow\dfrac{y}{24}=\dfrac{-12}{18}\)
\(\Rightarrow y=\dfrac{-12.24}{18}=-16\)
\(\dfrac{3-x}{-12}=\dfrac{16}{y+1}=\dfrac{192}{-72}\)
\(\Rightarrow\dfrac{3-x}{-12}=\dfrac{192}{-72}\)
\(\Rightarrow3-x=\dfrac{192.-12}{-72}=32\)
\(\Rightarrow x=-29\)
\(\Rightarrow\dfrac{16}{y+1}=\dfrac{192}{-72}\)
\(\Rightarrow y+1=\dfrac{16.-72}{192}=-6\)
d) \(\dfrac{-2}{3}< \dfrac{x}{5}< \dfrac{-1}{6}\)
\(\Rightarrow\dfrac{-20}{30}< \dfrac{6x}{30}< \dfrac{-5}{30}\)
\(\Rightarrow6x\in\left\{-18;-12;-6\right\}\)
\(\Rightarrow x\in\left\{-3;-2;-1\right\}\)
\(\dfrac{-1}{5}\le\dfrac{x}{8}\le\dfrac{1}{4}\)
\(\Rightarrow\dfrac{-8}{40}\le\dfrac{5x}{40}\le\dfrac{10}{40}\)
\(\Rightarrow5x\in\left\{-5;0;5;10\right\}\)
\(\Rightarrow x\in\left\{-1;0;1;2\right\}\)
e) \(\dfrac{x+46}{20}=x\dfrac{2}{5}\)
\(\Rightarrow\dfrac{x+46}{20}=x+\dfrac{2}{5}\)
\(\Rightarrow\dfrac{x+46}{20}=\dfrac{5x+2}{5}\)
\(\Rightarrow5.\left(x+46\right)=20.\left(5x+2\right)\)
\(\Rightarrow5x+230=100x+40\)
\(\Rightarrow5x-100x=40-230\)
\(\Rightarrow-95x=-190\)
\(\Rightarrow x=-190:-95\)
\(\Rightarrow x=2\)
\(y\dfrac{5}{y}=\dfrac{86}{y}\)
\(\Rightarrow y+\dfrac{5}{y}=\dfrac{86}{y}\)
\(\Rightarrow\dfrac{y^2+5}{y}=\dfrac{86}{y}\)
\(\Rightarrow y^2+5=86\)
\(\Rightarrow y^2=86-5\)
\(\Rightarrow y^2=81\)
\(\Rightarrow\left[{}\begin{matrix}y=9\\y=-9\end{matrix}\right.\)
Chúc bạn học tốt!
1)
\(\left(x-2\right)^4=\left(x-2\right)^6\)
\(\Rightarrow x-2=0\) hoặc \(x-2=1\)
\(\Rightarrow x=2\) hoặc \(x=3\)
Vậy: x = 2 hoặc x = 3.
\(9.3^x=243\)
\(3^x=243:9\)
\(3^x=27\)
\(\Rightarrow3^x=3^3\)
Vậy: x = 3.