K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2021

Bài 5:

a: \(\left(x+3\right)\left(x-3\right)-\left(x-2\right)\left(x+5\right)=6\)

\(\Leftrightarrow x^2-9-x^2-3x+10=6\)

\(\Leftrightarrow-3x=5\)

hay \(x=-\dfrac{5}{3}\)

20 tháng 6 2022

\(a)\)

\(A=\left(m-1\right)^3-\left(m-2\right)^3\)

\(=\left(m^3-3m^2+3m-1\right)-\left(m^3-6m^2+12m-8\right)\)

\(=m^3-3m^2+3m-1-m^3+6m^2-12m+8\)

\(=3m^2-9m+7\)

\(B=\left(3m-1\right)\left(3m+1\right)\)

\(=9m^2-1\)

\(\dfrac{1}{9}A=B-7\)

\(\Rightarrow\dfrac{1}{9}\left(3m^2-9m+7\right)=9m^2-1-7\)

\(\Rightarrow3m^2-9m+7=81m^2-72\)

\(\Rightarrow78m^2+9m-79=0\)

\(\Rightarrow m=\dfrac{-9\pm\sqrt{24729}}{156}\)

\(b)\)

\(A< B\)

\(\Rightarrow3m^2-9m+7< 9m^2-1\)

\(\Rightarrow6m^2+9m-8>0\)

\(\Rightarrow\left[{}\begin{matrix}m>\dfrac{-9+\sqrt{273}}{12}\\m< \dfrac{-9-\sqrt{273}}{12}\end{matrix}\right.\)

Gọi E là giao điểm của AC và BD.

∆ECD có ∠C1 = ∠D1 (do ∠ACD = ∠BDC) nên là tam giác cân.

Suy ra EC = ED        (1)

Tương tự ∆EAB cân tại A  suy ra: EA = EB      (2)

Từ (1) và (2) ta có: EA + EC = EB + ED ⇒ AC = BD

Hình thang ABCD có hai đường chéo bằng nhau nên là hình thang cân.4

20 tháng 8 2020

-3x4y + 6x3y - 3x2y

= -3x2y( x2 - 2x + 1 )

= -3x2y( x - 1 )2

20 tháng 8 2020

-3x4y+6x3y-3x2y

=-3x2y(x2-2xy+1)

=-3x2y(x-1)2

10 tháng 12 2021

e: \(=\dfrac{x^2-4x+4x-25}{x+5}=x-5\)

14 tháng 12 2021

\(a,=\dfrac{7x-2+8x-8}{3x-2}=\dfrac{5\left(3x-2\right)}{3x-2}=5\\ b,=\dfrac{4x+3+2x-18}{2x-5}=\dfrac{3\left(2x-5\right)}{2x-5}=3\\ c,=\dfrac{5x+2+2x-7+x-1}{4x-3}=\dfrac{2\left(4x-3\right)}{4x-3}=2\\ d,=\dfrac{x^2-1+2x-11+3-2x}{x-3}=\dfrac{\left(x-3\right)\left(x+3\right)}{x-3}=x+3\\ e,=\dfrac{x^2-2x+4x+x^2+2x}{\left(x-2\right)\left(x+2\right)}=\dfrac{2x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{2x}{x-2}\)

\(f,=\dfrac{x^2-5x+6+x-3+x-1}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}=\dfrac{\left(x-1\right)\left(x-2\right)}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}=\dfrac{1}{x-3}\)