K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2020

b)Ta có abcdef=abc000+def=(abc+def)+999.abc

Vì abc+def chia hết cho 37, 999 chia hết cho 37

=>(abc+def)+999abc chia hết cho 37(dpcm)

28 tháng 10 2018

37375

21 tháng 11 2018

ngọc ơi giờ này tao nhớ chúng mày lắm

18 tháng 2 2020

Gọi ƯCLN(2n + 3 ; 4n + 8) = d

=> \(\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+8⋮d\end{cases}\Rightarrow}\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}\Rightarrow4n+8-\left(4n+6\right)⋮d}\)

=> \(2⋮d\Rightarrow d\inƯ\left(2\right)\Rightarrow d\in\left\{\pm1;\pm2\right\}\)

Vì 2n + 3 là số lẻ ;  4n + 8 là số chẵn

=> ƯCLN(2n + 3 ; 4n + 8) \(\ne\)\(\pm\)2

=>  ƯCLN(2n + 3 ; 4n + 8) \(=\pm1\)

=> \(\frac{2n+3}{4n+8}\)là phân số tối giản 

+)Gọi d là số nguyên tố là ƯCLN(2n+3,4n+8)

+)2n+3\(⋮\)d;4n+8\(⋮\)d

+)2n+3\(⋮\)d

=>2.(2n+3)\(⋮\)d

=>4n+6\(⋮\)d(1)

+)4n+8\(⋮\)d

+)Từ (1) và (2)

=>(4n+8)-(4n+6)\(⋮\)d

=>4n+8-4n-6\(⋮\)d

=>2\(⋮\)d

=>d\(\in\)Ư(2)={1;2}

Vì 2n+3\(⋮̸\)2

=>ƯCLN(2n+3,4n+8)=1

Vậy \(\frac{2n+3}{4n+8}\)tối giản với mọi n

Chúc bn học tốt.Có j ko hiểu hỏi mk nha

5 tháng 7 2015

abc+def                                                                                                                                        = a*100000+b*10000+c*1000+d*100+e*10+f*1                                                                               = (a*b*c+d*e*f)*(100000+10000+1000+100+10+1)                                                                            =(a*b*c+d*e*f)*111111                                                                                                                  vì 111111 chia hết cho 37 nên (a*b*c+d*e*f) chia hết cho 37                                                             => DPCM

5 tháng 7 2015

Mk cũng đâu cần bạn trả lời,tự dưng vô đây ns ko làm,ko làm thì thôi có ai ép đâu.Mà tui cũng ko rảnh tiếp mấy Quèn

14 tháng 1 2023

Ai giúp mình đi ạ 😭

Bầi 2:

a: A=x+54

Để A chia hết cho 2 thì x chia hết cho 2

b: Để A chia hết cho 3 thì x chia hết cho 3

+)Gọi ƯCLN(n-3,n+1)=d;d nguyên tố

=>n-3\(⋮\)d;n+1\(⋮\)d

=>(n+1)-(n-3)\(⋮\)d

=>n+1-n+3\(⋮\)d

=>4\(⋮\)d

=>d\(\in\)Ư(4)={\(\pm1;\pm2;\pm4\)}

+)Ta thấy :d=2 thì nguyên tố

=>d=2

=>n+1\(⋮\)2

=>n+1=2k

=>n=2k-1

=>n\(\ne\)2k-1 thì \(\frac{n-3}{n+1}\) tối giản

Vậy n\(\ne\)2k-1 thì \(\frac{n-3}{n+1}\)tối giản

Chúc bn học tốt

27 tháng 2 2020

Gọi d là ước nguyên tố của 2n +3 và 4n +3

ta có 2n+3 chia hết cho d suy ra 2.(2n+3) chia hết cho d suy ra 4n +6 chia hết cho d

4n +3 chia hết cho d

suy ra 4n+6 - (4n+3) chia hết cho d

suy ra 3 chia hết cho d

mà d nguyên tố

suy ra d=3

Ta thấy 2n+3 \(⋮\)3 ( khi đó 4n +3 \(⋮\)3)

suy ra 2n \(⋮\)3 (vì 3 chia hết cho 3)

suy ra n \(⋮\)3 ( vì ƯCLN (2,3) = 1)

n =3k (k nguyên)

Kết luận : Với n \(\ne\)3k (k nguyên) thì phân số \(\frac{2n+3}{4n+3}\)tổi giản

CHÚC EM HỌC TỐT (ĐÂY LÀ BÀI TOÁN KHÓ ĐỐI VỚI HỌC SINH LƠP 6)

27 tháng 2 2020

để phân số tối giản thì 2n + 3 chia hết cho 4n +  3

 suy ra :   4n + 6 chia hết cho 4n + 3

suy ra :    4n + 6 - 3 chia hết cho 4n + 3

         3 chia hết cho 4n + 3

suy ra :   4n +  3 = -1 ,  3 ( loại 1 và -3 ) 

            n là :   -1 , 0 

19 tháng 11 2017

Gọi số chia hết cho 37 cần chứng minh là \(X=\overline{abcdeg}\)

Nếu chuyển chữ số đầu xuống cuối cùng ta được \(Y=\overline{gabcde}\)

Đặt: \(\overline{abcde}=n\)thì \(X=10n+g\)và \(Y=100000.g+n\)

Ta xét: \(10X-Y=100000g+10n-10n-g=999999n\)

mà \(999999n⋮37\)

\(\Rightarrow X;Y⋮37\)

mà \(\left(X;Y\right)=1\)

Vậy Y : 37 hay \(\overline{gabcde}⋮37\)

Nhớ k cho mình nhé! Thank you!!!

23 tháng 5 2017

a, Ta có: abcdeg = 1000. abc + deg

= 999. abc + abc + deg

= 37. 27 . abc + abc + deg

Có 37. 27. abc chia hết cho 37

và abc + deg chia hết cho 37.

Vậy abcdeg chia hết cho 37 với abc + deg chia hết cho 37.

b, Ta có: abcdeg = 1000. abc + deg

= 1001 . abc - abc + deg

= 7. 143 . abc - (abc - deg)

Có 7, 143 , abc chia hết cho 7

và abc - deg chia hết cho 7

Vậy abcdeg luôn chia hết cho 7 với abc - deg chia hết cho 7.

c, Trong 8 số tự nhiên liên tiếp thì luôn có các dạng số dư của một số khi chia cho 7 là \(\left\{0;1;2;3;4;5;6\right\}\)nhưng có tới tám số và 7 số dư thì chắc chắn trong tám số đó chắc chắn có 2 số đồng dư với nhau gọi là abc và deg. Mà abc và deg đồng dư với nhau thì hiệu abc - deg chia hết cho 7. Theo câu b thì abcdeg chia hết cho 7 với abc - deg chia hết cho 7. Suy ra abcdeg chia hết cho 7 với abc - deg chia hết cho 7.

Vậy trong 8 số tự nhiên có 3 chữ số, tồn tại hai số mà khi viết liêm tiếp nhau thì tạo thành một số có sáu chữ số chia hết cho 7.

Chúc bạn học tốt :)