Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: \(\dfrac{1}{1.9}\rightarrow\dfrac{9}{9.19}\)
Giải:
\(N=\dfrac{9}{9.19}+\dfrac{9}{19.29}+\dfrac{9}{29.39}+...+\dfrac{9}{2019.2029}\)
\(N=\dfrac{9}{10}.\left(\dfrac{10}{9.19}+\dfrac{10}{19.29}+\dfrac{10}{29.39}+...+\dfrac{10}{2019.2029}\right)\)
\(N=\dfrac{9}{10}.\left(\dfrac{1}{9}-\dfrac{1}{19}+\dfrac{1}{19}-\dfrac{1}{29}+\dfrac{1}{29}-\dfrac{1}{39}+...+\dfrac{1}{2019}-\dfrac{1}{2029}\right)\)
\(N=\dfrac{9}{10}.\left(\dfrac{1}{9}-\dfrac{1}{2029}\right)\)
\(N=\dfrac{9}{10}.\dfrac{2020}{18261}\)
\(N=\dfrac{202}{2029}\)
\(\left|x+\frac{1}{x}\right|=3x-1\)
\(\orbr{\begin{cases}x+\frac{1}{x}=3x-1\\-x-\frac{1}{x}=3x-1\end{cases}}\)
\(\orbr{\begin{cases}x+\frac{1}{x}-3x+1=0\\-x-\frac{1}{x}-3x+1=0\end{cases}}\)
\(\orbr{\begin{cases}-2x+\frac{1}{x}+1=0\\-4x-\frac{1}{x}+1=0\end{cases}}\)
\(\orbr{\begin{cases}-2x^2+1+x=0\\-4x^2-1+x=0\end{cases}}\)
\(\orbr{\begin{cases}x=-\frac{1}{2};x=1\\x=\frac{1-\sqrt{15t}}{8}\end{cases}}\)
| x + \(\frac{1}{3}\)| = 3x - 1
\(\Rightarrow\)x + \(\frac{1}{3}\)= \(\pm\)( 3x - 1 )
TH1 : x + \(\frac{1}{3}\)= 3x - 1
\(\Rightarrow\)2x = \(\frac{4}{3}\)
\(\Rightarrow\)x = \(\frac{2}{3}\)
TH2 : x + \(\frac{1}{3}\)= - 3x + 1
\(\Rightarrow\)4x = \(\frac{2}{3}\)
\(\Rightarrow\)x = \(\frac{1}{6}\)
a) Ta có: \(f\left(x\right)=2x^2\left(x-1\right)-5\left(x+2\right)-2x\left(x-2\right)\)
\(=2x^3-2x^2-5x-10-2x^2+4x\)
\(=2x^3-4x^2-x-10\)
Bậc là 3
Ta có: \(g\left(x\right)=x^2\left(2x-3\right)-x\left(x+1\right)-\left(3x-2\right)\)
\(=2x^3-3x^2-x^2-x-3x+2\)
\(=2x^3-4x^2-4x+2\)
b) Ta có: h(x)=f(x)-g(x)
\(=2x^3-4x^2-x-10-2x^3+4x^2+4x-2\)
\(=3x-12\)
Đặt h(x)=0
nên 3x-12=0
hay x=4