Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em tham khảo tại link dưới đây nhé:
Câu hỏi của Lê Xuân Huy - Toán lớp 7 - Học toán với OnlineMath
a) Áp dụng định lí Py-ta-go vào tam giác ABC vuông tại A ta có :
AB2 + AC2 = BC2
\(\Rightarrow\)AC2 = BC2 - AB2 = 102 - 62 = 82
\(\Rightarrow\)AC = 8 cm
theo định lí quan hệ giữa cạnh và góc trong tam giác ta có : \(\widehat{ACB}< \widehat{ABC}< \widehat{BAC}\)( vì AB < AC < BC )
b) Xét tam giác DAC và tam giác BAC có :
AB = AD ( gt )
\(\widehat{DAC}=\widehat{BAC}=90^o\)
AC ( cạnh chung )
\(\Rightarrow\)tam giác DAC = tam giác BAC ( c.g.c )
\(\Rightarrow\)DC = BC
\(\Rightarrow\)tam giác DCB cân tại C
c) Xét tam giác BDC có CA và DK là trung tuyến và chúng giao nhau tại M nên M là trọng tâm của tam giác BDC
\(\Rightarrow\)MC = \(\frac{2}{3}\)AC = \(\frac{2}{3}.8=\frac{16}{3}\)cm
d) Nối A với Q.
Vì Q nằm trên đường trung trực của AC nên QA = QC \(\Rightarrow\)tam giác QAC cân tại Q \(\Rightarrow\)\(\widehat{QAC}=\widehat{QCA}\)
Ta có : \(\widehat{ADC}+\widehat{DCA}=90^o\) ; \(\widehat{DAQ}+\widehat{QAC}=90^o\)
\(\Rightarrow\)\(\widehat{DAQ}=\widehat{ADQ}\)\(\Rightarrow\)tam giác DQA cân tại Q \(\Rightarrow\)DQ = DA
Từ đó suy ra : DQ = QC \(\Rightarrow\)BQ là trung tuyến tam giác DBC mà BQ đi qua trọng tâm M
Suy ra : 3 điểm B,M,Q thẳng hàng
áp dụng định lí py-ta-go ta có
AB^2+AC^2=BC
=6^2+AC^2=10^2
12+AC^2=20
SUY RA AC=20-12=8
CĂN BẬC 2 CỦA 8 LÀ 4
SUY RA AC=4
GÓC B <C<A
Bạn tự vẽ hình nhé
a, Xét \(\Delta ABC\)và \(\Delta CDA\), ta có
\(\widehat{DAC}=\widehat{ACB}\left(gt\right)\)
AC: cạnh chung
\(\widehat{BAC}=\widehat{DCA}\left(gt\right)\)
do đó: \(\Delta ABC=\Delta CDA\left(g.c.g\right)\)
=>AD=BC(2 cạnh tương ứng)
=>AB=DC(2 cạnh tương ứng)
b, Ta có: BC=AD(CMT)
=>\(\frac{1}{2}BC=\frac{1}{2}AD\)=>MC=AN
Xét \(\Delta MAC\)và \(\Delta NCA\), ta có:
MC=AN(CMT)
\(\widehat{NAC}=\widehat{MCA}\) (2 góc so le trong)
AC:cạnh chung
do đó: \(\Delta MAC=\Delta NCA\left(c.g.c\right)\)
=>AM=CN(2 cạnh tương ứng)
c, Xét \(\Delta OAD\)và \(\Delta OCB\), ta có:
\(\widehat{DAO}=\widehat{BCO}\)(2 góc so le trong)
BC=AD(CMT)
\(\widehat{OBC}=\widehat{ADO}\)(2 góc so le trong)
do đó \(\Delta AOD=\Delta COB\left(g.c.g\right)\)
=> OA=OC(2 cạnh tương ứng)
=>OB=OD(2 cạnh tương ứng)
d,Sử dụng tiên đề Ơ-Clit...Bạn suy nghĩ đi mk chưa có cách giải chi tiết
Chúc bạn học tốt