Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta co:
Vì tam ABC vuông tại A co D là trung điểm BC nên \(\widehat{MAC}=\widehat{MCA}=\frac{\widehat{AMB}}{2}\)
\(\Rightarrow\beta=2\alpha\)
Từ đây ta co:
\(cos^2\alpha-sin^2\alpha=cos\left(2\alpha\right)=cos\beta\)
Có:\(BH=\dfrac{AH}{tan\alpha}\)
\(CH=\dfrac{AH}{tan\beta}\)
\(\Rightarrow BH+CH=AH\left(\dfrac{1}{tan\alpha}+\dfrac{1}{tan\beta}\right)\)
\(\Rightarrow a=AH\left(\dfrac{1}{tan\alpha}+\dfrac{1}{tan\beta}\right)\)
\(\Leftrightarrow AH=\dfrac{a}{\dfrac{1}{tan\alpha}+\dfrac{1}{tan\beta}}\)
Vậy...
sin a=12/13
cos^2a=1-(12/13)^2=25/169
=>cosa=5/13
tan a=12/13:5/13=12/5
cot a=1:12/5=5/12
sin b=căn 3/2
cos^2b=1-(căn 3/2)^2=1/4
=>cos b=1/2
tan b=căn 3/2:1/2=căn 3
cot b=1/căn 3
có `cos α=1/2`
`=>cos^2 α=1/4`
Mà `cos^2 α +sin^2 α=1`
`=>1/4+sin^2 α=1`
`=>sin^2 α=1-1/4=3/4`
\(=>sin\alpha=\dfrac{\sqrt{3}}{2}\) (vì `sin α` >0)
ta có `sin α : cos α=tan α`
\(=>tan\alpha=\dfrac{\sqrt{3}}{2}:\dfrac{1}{2}=\sqrt{3}\)
ta có `tan α * cot α =1`
\(=>\sqrt{3}\cdot cot\alpha=1\\ =>cot\alpha=\dfrac{1}{\sqrt{3}}\)
tương tự ta có
\(\left\{{}\begin{matrix}sin\beta=\dfrac{\sqrt{2}}{2}\\cos\beta=1\\cot\beta=1\end{matrix}\right.\)
Nó chỉ là cái tên (giống như đặt tên tam giác là ABC, MNP gì đó tùy thích).
Góc alpha có số đo bất kì và góc beta sẽ có số đo bất kì nhưng khác với góc alpha.