Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) Xét t, giác ABEC có
M-tđ BC(AM- trung tuyến)
M-tđ AE(E đx A qua M)
BC cắt AE tại M
=> ABEC là hình bình hành (dhnb)
b)Hbh ABEC là hình thoi
<=> AB=AC(dhnb)
Vậy t.giác ABC cân tại A để ABEC là hình thoi
HBH ABEC là hình chữ nhật
<=> A=90 độ (dhnb)
Vậy t.giác ABC vuông tại A để ABEC là hình chữ nhật
Bài 2:
Xét t.giác AKMH có
A=90*
H=90*(MHvg góc AC)
K=90*(MK vg góc AB)
=> AKMH là hình chữ nhật(dhnb)
b) AM là trung tuyến ứng vs cạnh huyền
=> AM=MC
=> tam giác AMC cân tại M
MH là đg cao
=> MH là trung tuyến
=> H - tđ AC
Xét t,giác AMCP có
H- tđ Ac( cmt)
H - tđ MP ( P đx M qua H)
AC cắt MP tại H
=> AMCP là hình bình hành (dhnb)
lại có AM=MC( cmt)
=> AMCP là hình thoi ( dhnb)
Bài 3:
Xét tam giác ABC vg tại A có
AB2 + AC2 = BC2
TS: 52 + 122= BC2
BC2= 25+144
=> BC= 13
Am là trung tuyến
=> AM=1/2BC
=> AM =7,5
bài này mình chưa học nhưng nó tương tự như bài này dưới đây mình đã học
Xét tam giác ABC:
Ta có: EB = EA, FA = FC (gt)
Nên EF // BC, EF = 1/2 BC.
Xét tam giác BDC có: HB = HD, GD = GC (gt)
Nên HG // BC, HG = 1/2 BC.
Do đó EF //HG, EF = HG.
Tương tự EH // FG, EH = FG
Vậy EFGH là hình bình hành.
a) EFGH là hình chữ nhật ⇔ EH ⊥ EF ⇔ AD ⊥ BC
b) EFGH là hình thoi ⇔ EH = EF ⇔ AD = BC
c) EFGH là hình vuông ⇔ AD ⊥ BC và AD = BC
bài này tương tự bài 1
a) EF = 15
=> DM = EM = FM = 7,5
b) MND + D = 180
MND + 90 = 180
=> MND = 90
D + MED = 180
90 + MED = 180
=> MED = 90
=> DNME là hình chữ nhật
c) y hệt như bài trước mik giải
câu 1
a) ta có MF // AB,BA vuông góc AC=> MF vuông góc AC=> MFA=90 độ
tương tự góc EAF=90 độ
tứ giác AEMF có góc EAF=MFA=AEM =90 độ=> tứ giác AEMF là hcn
b) tam giác ABC co AM la T tuyến ung voi canh huyền BC=> AM=1/2BC,MC=1/2BC=> AM=MC=> tam giác AMC cân tai M
=> MF là T tuyến => Flà tđ cua AC
xét tam giác MAC=> DF là đtb cua tam giác AMC => DF//AM=> DF//OM (1)
tương tự OF // MD (2)
từ (1),(2) => T giác OMDF là hbh (3)
ta lai co OM=1/2AM,MD=1/2MC mà AM=MC => OM=DM (4)
từ (3),(4) => T giác OMDF la hình thoi
c) ta có tam giác ABC vuông can tai A=> góc BCA=45 độ
mà góc BCA= MAC=góc MAC =45 dộ=> tam giác MFA vuông can tai F
áp dung Pitago => AF=2 căn 2 cm, ma AF=FM=> AF=FM=2 căn 2 cm
diện tích AEMF=AF.FM=2cAn 2.2can 2=8 cm vuông
Bài 2:
a: Xét tứ giác AMCK có
I là trung điểm của AC
I là trug điểm của MK
Do đó: AMCK là hình bình hành
mà \(\widehat{AMC}=90^0\)
nên AMCK là hình chữ nhật
b: Để AMCK là hình vuông thì AM=CM
=>AM=BC/2
=>ΔABC vuông tại A